I. Length of Authorization

Coverage will be provided for six months and may be renewed. For CNS cancers (symptom management), coverage will be provided for 12 weeks and may NOT be renewed.

II. Dosing Limits

A. Quantity Limit (max daily dose) [Pharmacy Benefit]:

- 100 mg/4 mL vial: 3 vials 21 days
- 400 mg/16 mL vial: 4 vials per 21 days

B. Max Units (per dose and over time) [Medical Benefit]:

Oncology indications (J9035):

- 170 billable units per 21 days
- 120 billable units per 14 days

III. Initial Approval Criteria

- Patient must have a contraindication or intolerance to bevacizumab-awwb (Mvasi™) prior to consideration of Avastin.

Coverage is provided in the following conditions:

- Patient is 18 years or older: **AND**
- Patient must have no recent history of hemorrhage or hemoptysis (the presence of blood in sputum): **AND**
- Patient must not have had a surgical procedure within the preceding 28 days or have a surgical wound that has not fully healed: **AND**

Colorectal Cancer (CRC) †

- Not used as part of adjuvant treatment: **AND**
- Will not be used in combination with another biologic agent (i.e., panitumumab, ramucirumab, etc.): **AND**
- Patient’s disease is metastatic, unresectable, or advanced: **AND**
 - Used as first-line therapy: **AND**
▪ In combination with a fluoropyrimidine-based regimen (e.g., 5-fluorouracil/5-FU or capecitabine) OR
▪ In combination with irinotecan or irinotecan-based regimen (FOLFIRI) after previous adjuvant FOLFOX or CapeOX within the past 12 months; OR
 o Used as subsequent therapy: AND
 ▪ In combination with a fluoropyrimidine-based regimen (e.g., 5-fluorouracil/5-FU or capecitabine) OR
 ▪ In combination with irinotecan or FOLFIRI (if previously treated with oxaliplatin-based therapy without irinotecan): OR
 ▪ In combination with FOLFOX or CapeOX (if previously treated with irinotecan-based therapy without oxaliplatin): OR
 ▪ In combination with FOLFOX, CapeOX, irinotecan, FOLFIRI, or irinotecan and oxaliplatin (if previously treated with fluoropyrimidine-based therapy without irinotecan or oxaliplatin): OR
 • Used for metastatic disease that has progressed on first-line bevacizumab containing regimen in combination with an irinotecan and/or oxaliplatin-based regimen (if not used first-line)

Non-Squamous Non-Small Cell Lung Cancer (NSCLC)
- Used as first-line therapy for recurrent, locally advanced, unresectable, or metastatic disease in combination with carboplatin and paclitaxel OR
- Used for recurrent, advanced, or metastatic disease (excluding locoregional recurrence or symptomatic local disease with no evidence of disseminated disease): AND
 o Used as first-line therapy for EGFR, ALK negative or unknown, PD-L1 expression ≥ 1% and PS ≤ 2 in combination with atezolizumab, carboplatin, and paclitaxel: OR
 o Used as first-line therapy in patients with PS ≤ 1 for genomic tumor aberration (e.g., EGFR, ALK, ROS1, BRAF) negative or unknown and PD-L1 <1% or unknown OR BRAF V600E-mutation positive in combination with:
 ▪ Atezolizumab, carboplatin and paclitaxel: OR
 o Used as subsequent therapy in patients with PS ≤ 1 for genomic tumor aberration (e.g., EGFR, ALK, ROS1) positive and prior targeted therapy OR BRAF V600E-mutation positive OR PD-L1 ≥ 1% and EGFR, ALK negative or unknown with no prior platinum-doublet chemotherapy in combination with:
 ▪ Carboplatin and paclitaxel: OR
 ▪ Atezolizumab, carboplatin and paclitaxel: OR
 o Used as continuation maintenance therapy (*bevacizumab must have been included in patient’s first-line chemotherapy regimen*) for PS ≤ 2 and patient’s disease has not progressed (achieved tumor response or stable disease) after first-line systemic therapy; AND
 ▪ Used as a single agent: OR
 ▪ Used in combination with atezolizumab if bevacizumab was previously used first-line as part of atezolizumab/carboplatin/paclitaxel/bevacizumab regimen

Cervical Cancer
• Patient’s disease must be persistent, recurrent, or metastatic: AND
• Used in combination with paclitaxel AND either cisplatin, carboplatin, or topotecan

Renal Cell Carcinoma (RCC) †
• Patient must have metastatic or relapsed disease: AND
 o Must be used in combination with interferon alfa as first-line therapy for clear cell histology †; OR
 o Must be used as a single agent or in combination with everolimus as first-line therapy in patients with non-clear cell histology ‡; OR
 o Used in combination with erlotinib as first- or second-line therapy in patients with non-clear cell histology papillary disease including hereditary leiomyomatosis and renal cell cancer (HLRCC) ‡

Central Nervous System (CNS) Cancer
• Used for symptom management related to radiation necrosis, poorly controlled vasogenic edema, or mass effect as single-agent short-course therapy; AND
 o Patient has a diagnosis of one of the following other CNS cancers ‡:
 – Supratentorial Astrocytoma/Oligodendroglioma (Low-Grade Infiltrative, WHO Grade II): OR
 – Primary CNS Lymphoma: OR
 – Meningiomas: OR
 – Brain, Spine, or Leptomeningeal metastases: OR
 – Medulloblastoma: OR
 – Recurrent Glioblastoma or Anaplastic Gliomas: OR
 – Recurrent Intracranial or Spinal Ependymoma (excluding subependymoma): OR
• Used as a single agent OR in combination with lomustine or temozolomide in patients with recurrent Glioblastomas † or Anaplastic Gliomas ‡: OR
• Used as single agent therapy for patients with progressive or recurrent disease who do not have subependymomas in patients with a diagnosis of recurrent Intracranial and Spinal Ependymoma ‡

Ovarian Cancer †
• Patient has malignant stage II-IV sex cord-stromal tumors ‡: AND
 o Used as single agent therapy for relapsed disease: OR
• Patient has Epithelial or Fallopian Tube or Primary Peritoneal Cancers †: AND
 o Patient has persistent or recurrent disease: AND
 ▪ Bevacizumab has not been used previously; AND
 ▪ Patient is not experiencing an immediate biochemical relapse (i.e., rising CA-125 without radiographic evidence of disease); AND
 – If platinum resistant, used in combination with one of the following: oral cyclophosphamide, PEGylated liposomal doxorubicin, weekly paclitaxel, or topotecan † or may be used as a single agent ‡; OR
- Used as neoadjuvant therapy for endometrioid or serous histology in combination with paclitaxel and carboplatin: **AND**
 - Patient has is a poor surgical candidate or has a low likelihood of optimal cytoreduction: **OR**
- Used as primary therapy for endometrioid or serous histology in combination with paclitaxel and carboplatin: **AND**
 - Patient had an incomplete resection and/or has unresectable stage II-IV residual disease: **OR**
- Used as adjuvant therapy in combination with paclitaxel and carboplatin: **AND**
 - Patient has stage II-IV disease of serous, endometrioid, mucinous carcinoma, or clear cell carcinoma histology: **OR**
 - Patient has borderline epithelial tumors with invasive implants: **OR**
- Used in combination with paclitaxel and carboplatin for patients with rising CA-125 levels or clinical relapse in patients with no prior chemotherapy.

Soft Tissue Sarcoma ‡
- Used as a single agent for angiosarcoma: **OR**
- Used in combination with temozolomide for solitary fibrous tumor or hemangiopericytoma

Endometrial Carcinoma ‡
- Used as a single agent therapy for disease that has progressed on prior cytotoxic therapy: **OR**
- Used in combination with carboplatin and paclitaxel for advanced or recurrent disease

Malignant Pleural Mesothelioma ‡
- Patient has unresectable or metastatic disease: **AND**
- Must be used first-line in combination with pemetrexed AND either cisplatin or carboplatin followed by single-agent maintenance bevacizumab

AIDS-Related Kaposi Sarcoma ‡
- Patient has relapsed or refractory disease: **AND**
- Patient has advanced cutaneous, oral, visceral, or nodal disease: **AND**
- Used as subsequent therapy in combination with antiretroviral therapy (ART) after failure to two lines of systemic therapy

Vulvar Cancer ‡
- Used in combination with paclitaxel and cisplatin for squamous cell carcinoma: **AND**
- Patient has unresectable locally advanced, metastatic, or recurrent disease

Preferred therapies and recommendations are determined by review of clinical evidence. NCCN category of recommendation is taken into account as a component of this review. Regimens deemed equally efficacious (i.e., those having the same NCCN categorization) are considered to be therapeutically equivalent.

† FDA-labeled indication(s); ‡ Compendia recommended indication(s)
Genomic Aberration Targeted Therapies (*not all inclusive*)

<table>
<thead>
<tr>
<th>Sensitizing EGFR mutation-positive tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erlotinib</td>
</tr>
<tr>
<td>Afatinib</td>
</tr>
<tr>
<td>Gefitinib</td>
</tr>
<tr>
<td>Dacomitinib</td>
</tr>
<tr>
<td>Osimertinib</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALK rearrangement-positive tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crizotinib</td>
</tr>
<tr>
<td>Ceritinib</td>
</tr>
<tr>
<td>Brigatinib</td>
</tr>
<tr>
<td>Alectinib</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROS1 rearrangement-positive tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crizotinib</td>
</tr>
<tr>
<td>Ceritinib</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BRAF V600E-mutation positive tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dabrafenib/Trametinib</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PD-L1 expression-positive tumors (>1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembrolizumab</td>
</tr>
<tr>
<td>Atezolizumab</td>
</tr>
</tbody>
</table>

IV. Renewal Criteria

Coverage can be renewed based upon the following criteria:

- Patient continues to meet the criteria identified in section III: **AND**
- Tumor response with stabilization of disease or decrease in size of tumor or tumor spread: **AND**
- Absence of unacceptable toxicity from the drug. Examples of unacceptable toxicity include: gastrointestinal perforation, surgical/wound healing complications, hemorrhage, arterial and venous thromboembolic events (ATE & VTE), uncontrolled hypertension, posterior reversible encephalopathy syndrome (PRES), nephrotic syndrome, severe infusion reactions, ovarian failure, congestive heart failure (CHF), etc.: **AND**

CNS Cancers – symptom management (short-course therapy):

- May NOT be renewed

Colorectal Cancer (additional renewal opportunity):

- Patient’s disease has progressed on a first-line bevacizumab-containing regimen: **AND**
 - Used in combination with an irinotecan and/or oxaliplatin-based regimen (if not used first line)

Malignant Pleural Mesothelioma – maintenance therapy:

- Must be used as a single agent

Non-squamous non-small cell lung cancer – continuation maintenance therapy:

- Bevacizumab must have been included in patient’s 1st line chemotherapy: **AND**
- Patient must have an ECOG performance status ≤2: **AND**
 - Used as a single agent: **OR**
 - Used as a single agent or in combination with atezolizumab if bevacizumab was previously used first-line as part of atezolizumab/carboplatin/paclitaxel/bevacizumab regimen
V. Dosage/Administration

<table>
<thead>
<tr>
<th>Indication</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>5 to 10 mg/kg every 2 weeks or 7.5 mg/kg every 3 weeks</td>
</tr>
<tr>
<td>NSCLC & Cervical Cancer</td>
<td>15 mg/kg every 3 weeks until disease progression or unacceptable toxicity.</td>
</tr>
</tbody>
</table>
| CNS Cancers | – For disease treatment: 10 mg/kg every 2 weeks until disease progression or unacceptable toxicity.
 | – For symptom management: 5-10 mg/kg every 2 weeks up to 12 weeks duration |
| RCC | 10 mg/kg every 2 weeks until disease progression or unacceptable toxicity. |
| MPM | 15 mg/kg every 3 weeks in combination with chemotherapy for up to 6 cycles followed by single agent use, at the same dose/frequency, until disease progression or unacceptable toxicity. |
| Ovarian Cancer | Platinum-resistant:
 | 10 mg/kg every 2 weeks or 15 mg/kg every 3 weeks until disease progression or unacceptable toxicity. |
| All Other Oncology Indications | 5-10 mg/kg every 2 weeks OR 7.5-15 mg/kg every 3 weeks |

VI. Billing Code/Availability Information

Jcode:
- J9035 – Injection, bevacizumab, 10 mg; 1 billable unit = 10 mg

NDC:
- Avastin single-use vial, 100 mg/4 mL solution for injection: 50242-0060-xx
- Avastin single-use vial, 400 mg/16 mL solution for injection: 50242-0061-xx

VII. References

2. Referenced with permission from the NCCN Drugs & Biologics Compendium (NCCN Compendium®) bevacizumab. National Comprehensive Cancer Network, 2019. The NCCN Compendium® is a derivative work of the NCCN Guidelines®. NATIONAL COMPREHENSIVE CANCER NETWORK®, NCCN®, and NCCN GUIDELINES® are trademarks owned by the National Comprehensive Cancer Network, Inc. To view the most recent and complete version of the Compendium, go online to NCCN.org. Accessed August 2019.

To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org. Accessed August 2019.

35. Venook AP, Niedzwiecki D, Innocenti F, et al. Impact of primary (1º) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): Analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol 34, 2016 (suppl: abstr 3504).

154. Lorusso D, Ferrandina G, Colombo N, et al. Randomized phase II trial of carboplatin-paclitaxel (CP) compared to carboplatin-paclitaxel-bevacizumab (CP-B) in advanced (stage III-

Appendix 1 – Covered Diagnosis Codes

<table>
<thead>
<tr>
<th>ICD-10</th>
<th>ICD-10 Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C17.0</td>
<td>Malignant neoplasm duodenum</td>
</tr>
<tr>
<td>C17.1</td>
<td>Malignant neoplasm jejunal</td>
</tr>
<tr>
<td>C17.2</td>
<td>Malignant neoplasm ileum</td>
</tr>
<tr>
<td>C17.8</td>
<td>Malignant neoplasm of overlapping sites of small intestines</td>
</tr>
<tr>
<td>C17.9</td>
<td>Malignant neoplasm of small intestine, unspecified</td>
</tr>
<tr>
<td>C18.0</td>
<td>Malignant neoplasm of cecum</td>
</tr>
<tr>
<td>C18.1</td>
<td>Malignant neoplasm of appendix</td>
</tr>
<tr>
<td>C18.2</td>
<td>Malignant neoplasm of ascending colon</td>
</tr>
<tr>
<td>C18.3</td>
<td>Malignant neoplasm of hepatic flexure</td>
</tr>
<tr>
<td>C18.4</td>
<td>Malignant neoplasm of transverse colon</td>
</tr>
<tr>
<td>C18.5</td>
<td>Malignant neoplasm of splenic flexure</td>
</tr>
<tr>
<td>C18.6</td>
<td>Malignant neoplasm of descending colon</td>
</tr>
<tr>
<td>C18.7</td>
<td>Malignant neoplasm of sigmoid colon</td>
</tr>
<tr>
<td>C18.8</td>
<td>Malignant neoplasm of overlapping sites of large intestines</td>
</tr>
<tr>
<td>C18.9</td>
<td>Malignant neoplasm of colon, unspecified</td>
</tr>
<tr>
<td>C19</td>
<td>Malignant neoplasm of rectosigmoid junction</td>
</tr>
<tr>
<td>C20</td>
<td>Malignant neoplasm of rectum</td>
</tr>
<tr>
<td>C21.8</td>
<td>Malignant neoplasm of overlapping sites of rectum, anus and anal canal</td>
</tr>
<tr>
<td>ICD-10</td>
<td>ICD-10 Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>C33</td>
<td>Malignant neoplasm of trachea</td>
</tr>
<tr>
<td>C34.00</td>
<td>Malignant neoplasm of unspecified main bronchus</td>
</tr>
<tr>
<td>C34.01</td>
<td>Malignant neoplasm of right main bronchus</td>
</tr>
<tr>
<td>C34.02</td>
<td>Malignant neoplasm of left main bronchus</td>
</tr>
<tr>
<td>C34.10</td>
<td>Malignant neoplasm of upper lobe, unspecified bronchus or lung</td>
</tr>
<tr>
<td>C34.11</td>
<td>Malignant neoplasm of upper lobe, right bronchus or lung</td>
</tr>
<tr>
<td>C34.12</td>
<td>Malignant neoplasm of upper lobe, left bronchus or lung</td>
</tr>
<tr>
<td>C34.2</td>
<td>Malignant neoplasm of middle lobe, bronchus or lung</td>
</tr>
<tr>
<td>C34.30</td>
<td>Malignant neoplasm of lower lobe, unspecified bronchus or lung</td>
</tr>
<tr>
<td>C34.31</td>
<td>Malignant neoplasm of lower lobe, right bronchus or lung</td>
</tr>
<tr>
<td>C34.32</td>
<td>Malignant neoplasm of lower lobe, left bronchus or lung</td>
</tr>
<tr>
<td>C34.80</td>
<td>Malignant neoplasm of overlapping sites of unspecified bronchus or lung</td>
</tr>
<tr>
<td>C34.81</td>
<td>Malignant neoplasm of overlapping sites of right bronchus and lung</td>
</tr>
<tr>
<td>C34.82</td>
<td>Malignant neoplasm of overlapping sites of left bronchus and lung</td>
</tr>
<tr>
<td>C34.90</td>
<td>Malignant neoplasm of unspecified part of unspecified bronchus or lung</td>
</tr>
<tr>
<td>C34.91</td>
<td>Malignant neoplasm of unspecified part of right bronchus or lung</td>
</tr>
<tr>
<td>C34.92</td>
<td>Malignant neoplasm of unspecified part of left bronchus or lung</td>
</tr>
<tr>
<td>C38.4</td>
<td>Malignant neoplasm of pleura</td>
</tr>
<tr>
<td>C45.0</td>
<td>Mesothelioma of pleura</td>
</tr>
<tr>
<td>C45.1</td>
<td>Mesothelioma of peritoneum</td>
</tr>
<tr>
<td>C46.0</td>
<td>Kaposi's sarcoma of skin</td>
</tr>
<tr>
<td>C46.1</td>
<td>Kaposi's sarcoma of soft tissue</td>
</tr>
<tr>
<td>C46.2</td>
<td>Kaposi's sarcoma of palate</td>
</tr>
<tr>
<td>C46.3</td>
<td>Kaposi's sarcoma of lymph nodes</td>
</tr>
<tr>
<td>C46.4</td>
<td>Kaposi's sarcoma of gastrointestinal sites</td>
</tr>
<tr>
<td>C46.50</td>
<td>Kaposi's sarcoma of unspecified lung</td>
</tr>
<tr>
<td>C46.51</td>
<td>Kaposi's sarcoma of right lung</td>
</tr>
<tr>
<td>C46.52</td>
<td>Kaposi's sarcoma of left lung</td>
</tr>
<tr>
<td>C46.7</td>
<td>Kaposi's sarcoma of other sites</td>
</tr>
<tr>
<td>C46.9</td>
<td>Kaposi's sarcoma, unspecified</td>
</tr>
<tr>
<td>C48.0</td>
<td>Malignant neoplasm of retroperitoneum</td>
</tr>
<tr>
<td>C48.1</td>
<td>Malignant neoplasm of specified parts of peritoneum</td>
</tr>
<tr>
<td>C48.2</td>
<td>Malignant neoplasm of peritoneum, unspecified</td>
</tr>
<tr>
<td>C48.8</td>
<td>Malignant neoplasm of overlapping sites of retroperitoneum and peritoneum</td>
</tr>
<tr>
<td>C49.0</td>
<td>Malignant neoplasm of connective and soft tissue of head, face and neck</td>
</tr>
<tr>
<td>C49.10</td>
<td>Malignant neoplasm of connective and soft tissue of unspecified upper limb, including shoulder</td>
</tr>
<tr>
<td>C49.11</td>
<td>Malignant neoplasm of connective and soft tissue of right upper limb including shoulder</td>
</tr>
<tr>
<td>C49.12</td>
<td>Malignant neoplasm of connective and soft tissue of left upper limb, including shoulder</td>
</tr>
<tr>
<td>ICD-10</td>
<td>ICD-10 Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
</tr>
<tr>
<td>C49.20</td>
<td>Malignant neoplasm of connective and soft tissue of unspecified lower limb, including hip</td>
</tr>
<tr>
<td>C49.21</td>
<td>Malignant neoplasm of connective and soft tissue of right lower limb, including hip</td>
</tr>
<tr>
<td>C49.22</td>
<td>Malignant neoplasm of connective and soft tissue of left lower limb, including hip</td>
</tr>
<tr>
<td>C49.3</td>
<td>Malignant neoplasm of connective and soft tissue of thorax</td>
</tr>
<tr>
<td>C49.4</td>
<td>Malignant neoplasm of connective and soft tissue of abdomen</td>
</tr>
<tr>
<td>C49.5</td>
<td>Malignant neoplasm of connective and soft tissue of pelvis</td>
</tr>
<tr>
<td>C49.6</td>
<td>Malignant neoplasm of connective and soft tissue of trunk, unspecified</td>
</tr>
<tr>
<td>C49.8</td>
<td>Malignant neoplasm of overlapping sites of connective and soft tissue</td>
</tr>
<tr>
<td>C49.9</td>
<td>Malignant neoplasm of connective and soft tissue, unspecified</td>
</tr>
<tr>
<td>C51.0</td>
<td>Malignant neoplasm of labium majus</td>
</tr>
<tr>
<td>C51.1</td>
<td>Malignant neoplasm of labium minus</td>
</tr>
<tr>
<td>C51.2</td>
<td>Malignant neoplasm of clitoris</td>
</tr>
<tr>
<td>C51.8</td>
<td>Malignant neoplasm of overlapping sites of vulva</td>
</tr>
<tr>
<td>C51.9</td>
<td>Malignant neoplasm of vulva, unspecified</td>
</tr>
<tr>
<td>C53.0</td>
<td>Malignant neoplasm of endocervix</td>
</tr>
<tr>
<td>C53.1</td>
<td>Malignant neoplasm of exocervix</td>
</tr>
<tr>
<td>C53.8</td>
<td>Malignant neoplasm of overlapping sites of cervix uteri</td>
</tr>
<tr>
<td>C53.9</td>
<td>Malignant neoplasm of cervix uteri, unspecified</td>
</tr>
<tr>
<td>C54.0</td>
<td>Malignant neoplasm of isthmus uteri</td>
</tr>
<tr>
<td>C54.1</td>
<td>Malignant neoplasm of endometrium</td>
</tr>
<tr>
<td>C54.2</td>
<td>Malignant neoplasm of myometrium</td>
</tr>
<tr>
<td>C54.3</td>
<td>Malignant neoplasm of fundus uteri</td>
</tr>
<tr>
<td>C54.8</td>
<td>Malignant neoplasm of overlapping sites of corpus uteri</td>
</tr>
<tr>
<td>C54.9</td>
<td>Malignant neoplasm of corpus uteri, unspecified</td>
</tr>
<tr>
<td>C55</td>
<td>Malignant neoplasm of uterus, part unspecified</td>
</tr>
<tr>
<td>C56.1</td>
<td>Malignant neoplasm of right ovary</td>
</tr>
<tr>
<td>C56.2</td>
<td>Malignant neoplasm of left ovary</td>
</tr>
<tr>
<td>C56.9</td>
<td>Malignant neoplasm of unspecified ovary</td>
</tr>
<tr>
<td>C57.00</td>
<td>Malignant neoplasm of unspecified fallopian tube</td>
</tr>
<tr>
<td>C57.01</td>
<td>Malignant neoplasm of right fallopian tube</td>
</tr>
<tr>
<td>C57.02</td>
<td>Malignant neoplasm of left fallopian tube</td>
</tr>
<tr>
<td>C57.10</td>
<td>Malignant neoplasm of unspecified broad ligament</td>
</tr>
<tr>
<td>C57.11</td>
<td>Malignant neoplasm of right broad ligament</td>
</tr>
<tr>
<td>C57.12</td>
<td>Malignant neoplasm of left broad ligament</td>
</tr>
<tr>
<td>C57.20</td>
<td>Malignant neoplasm of unspecified round ligament</td>
</tr>
<tr>
<td>C57.21</td>
<td>Malignant neoplasm of right round ligament</td>
</tr>
<tr>
<td>C57.22</td>
<td>Malignant neoplasm of left round ligament</td>
</tr>
<tr>
<td>C57.3</td>
<td>Malignant neoplasm of parametrium</td>
</tr>
<tr>
<td>ICD-10</td>
<td>ICD-10 Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
</tr>
<tr>
<td>C57.4</td>
<td>Malignant neoplasm of uterine adnexa, unspecified</td>
</tr>
<tr>
<td>C57.7</td>
<td>Malignant neoplasm of other specified female genital organs</td>
</tr>
<tr>
<td>C57.8</td>
<td>Malignant neoplasm of overlapping sites of female genital organs</td>
</tr>
<tr>
<td>C57.9</td>
<td>Malignant neoplasm of female genital organ, unspecified</td>
</tr>
<tr>
<td>C64.1</td>
<td>Malignant neoplasm of right kidney, except renal pelvis</td>
</tr>
<tr>
<td>C64.2</td>
<td>Malignant neoplasm of left kidney, except renal pelvis</td>
</tr>
<tr>
<td>C64.9</td>
<td>Malignant neoplasm of unspecified kidney, except renal pelvis</td>
</tr>
<tr>
<td>C65.1</td>
<td>Malignant neoplasm of right renal pelvis</td>
</tr>
<tr>
<td>C65.2</td>
<td>Malignant neoplasm of left renal pelvis</td>
</tr>
<tr>
<td>C65.9</td>
<td>Malignant neoplasm of unspecified renal pelvis</td>
</tr>
<tr>
<td>C70.9</td>
<td>Malignant neoplasm of meninges, unspecified</td>
</tr>
<tr>
<td>C71.0</td>
<td>Malignant neoplasm of cerebrum, except lobes and ventricles</td>
</tr>
<tr>
<td>C71.1</td>
<td>Malignant neoplasm of frontal lobe</td>
</tr>
<tr>
<td>C71.2</td>
<td>Malignant neoplasm of temporal lobe</td>
</tr>
<tr>
<td>C71.3</td>
<td>Malignant neoplasm of parietal lobe</td>
</tr>
<tr>
<td>C71.4</td>
<td>Malignant neoplasm of occipital lobe</td>
</tr>
<tr>
<td>C71.5</td>
<td>Malignant neoplasm of cerebral ventricle</td>
</tr>
<tr>
<td>C71.6</td>
<td>Malignant neoplasm of cerebellum</td>
</tr>
<tr>
<td>C71.7</td>
<td>Malignant neoplasm of brain stem</td>
</tr>
<tr>
<td>C71.8</td>
<td>Malignant neoplasm of overlapping sites of brain</td>
</tr>
<tr>
<td>C71.9</td>
<td>Malignant neoplasm of brain, unspecified</td>
</tr>
<tr>
<td>C72.0</td>
<td>Malignant neoplasm of spinal cord</td>
</tr>
<tr>
<td>C72.9</td>
<td>Malignant neoplasm of central nervous system, unspecified</td>
</tr>
<tr>
<td>C78.00</td>
<td>Secondary malignant neoplasm of unspecified lung</td>
</tr>
<tr>
<td>C78.01</td>
<td>Secondary malignant neoplasm of right lung</td>
</tr>
<tr>
<td>C78.02</td>
<td>Secondary malignant neoplasm of left lung</td>
</tr>
<tr>
<td>C78.6</td>
<td>Secondary malignant neoplasm of retroperitoneum and peritoneum</td>
</tr>
<tr>
<td>C78.7</td>
<td>Secondary malignant neoplasm of liver and intrahepatic bile duct</td>
</tr>
<tr>
<td>C79.31</td>
<td>Secondary malignant neoplasm of brain</td>
</tr>
<tr>
<td>C79.32</td>
<td>Secondary malignant neoplasm of cerebral meninges</td>
</tr>
<tr>
<td>C79.82</td>
<td>Secondary malignant neoplasm of genital organs</td>
</tr>
<tr>
<td>C79.89</td>
<td>Secondary malignant neoplasm of other specified sites</td>
</tr>
<tr>
<td>C79.9</td>
<td>Secondary malignant neoplasm of unspecified site</td>
</tr>
<tr>
<td>C83.30</td>
<td>Diffuse large B-cell lymphoma unspecified site</td>
</tr>
<tr>
<td>C83.31</td>
<td>Diffuse large B-cell lymphoma lymph nodes of head, face, and neck</td>
</tr>
<tr>
<td>C83.39</td>
<td>Diffuse large B-cell lymphoma extranodal and solid organ sites</td>
</tr>
<tr>
<td>C83.80</td>
<td>Other non-follicular lymphoma unspecified site</td>
</tr>
<tr>
<td>C83.81</td>
<td>Other non-follicular lymphoma lymph nodes of head, face, and neck</td>
</tr>
<tr>
<td>ICD-10</td>
<td>ICD-10 Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
</tr>
<tr>
<td>C83.89</td>
<td>Other non-follicular lymphoma extranodal and solid organ sites</td>
</tr>
<tr>
<td>C85.89</td>
<td>Other specified types of non-Hodgkin lymphoma, extranodal and solid organ sites</td>
</tr>
<tr>
<td>D43.0</td>
<td>Neoplasm of uncertain behavior of brain, supratentorial</td>
</tr>
<tr>
<td>D43.1</td>
<td>Neoplasm of uncertain behavior of brain, infratentorial</td>
</tr>
<tr>
<td>D43.2</td>
<td>Neoplasm of uncertain behavior of brain, unspecified</td>
</tr>
<tr>
<td>D43.4</td>
<td>Neoplasm of uncertain behavior of spinal cord</td>
</tr>
<tr>
<td>I67.89</td>
<td>Other cerebrovascular disease</td>
</tr>
<tr>
<td>Z85.038</td>
<td>Personal history of other malignant neoplasm of large intestine</td>
</tr>
<tr>
<td>Z85.068</td>
<td>Personal history of other malignant neoplasm of small intestine</td>
</tr>
<tr>
<td>Z85.118</td>
<td>Personal history of other malignant neoplasm of bronchus and lung</td>
</tr>
<tr>
<td>Z85.43</td>
<td>Personal history of malignant neoplasm of ovary</td>
</tr>
<tr>
<td>Z85.528</td>
<td>Personal history of other malignant neoplasm of kidney</td>
</tr>
<tr>
<td>Z85.831</td>
<td>Personal history of malignant neoplasm of soft tissue</td>
</tr>
<tr>
<td>Z85.841</td>
<td>Personal history of malignant neoplasm of brain</td>
</tr>
</tbody>
</table>

Appendix 2 – Centers for Medicare and Medicaid Services (CMS)

Medicare coverage for outpatient (Part B) drugs is outlined in the Medicare Benefit Policy Manual (Pub. 100-2), Chapter 15, §50 Drugs and Biologicals. In addition, National Coverage Determination (NCD) and Local Coverage Determinations (LCDs) may exist and compliance with these policies is required where applicable. They can be found at: http://www.cms.gov/medicare-coverage-database/search/advanced-search.aspx. Additional indications may be covered at the discretion of the health plan.

Medicare Part B Covered Diagnosis Codes (applicable to existing NCD/LCD):

<table>
<thead>
<tr>
<th>Jurisdiction(s): 6, K</th>
<th>NCD/LCD Document(s): A52370</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Jurisdiction(s): 15</th>
<th></th>
</tr>
</thead>
</table>

Medicare Part B Administrative Contractor (MAC) Jurisdictions

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Applicable State/US Territory</th>
<th>Contractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (1)</td>
<td>CA, HI, NV, AS, GU, CNMI</td>
<td>Noridian Healthcare Solutions, LLC</td>
</tr>
<tr>
<td>F (2 & 3)</td>
<td>AK, WA, OR, ID, ND, SD, MT, WY, UT, AZ</td>
<td>Noridian Healthcare Solutions, LLC</td>
</tr>
<tr>
<td>5</td>
<td>KS, NE, IA, MO</td>
<td>Wisconsin Physicians Service Insurance Corp (WPS)</td>
</tr>
<tr>
<td>6</td>
<td>MN, WI, IL</td>
<td>National Government Services, Inc. (NGS)</td>
</tr>
<tr>
<td>H (4 & 7)</td>
<td>LA, AR, MS, TX, OK, CO, NM</td>
<td>Novitas Solutions, Inc.</td>
</tr>
<tr>
<td>8</td>
<td>MI, IN</td>
<td>Wisconsin Physicians Service Insurance Corp (WPS)</td>
</tr>
</tbody>
</table>
Medicare Part B Administrative Contractor (MAC) Jurisdictions

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Applicable State/US Territory</th>
<th>Contractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (9)</td>
<td>FL, PR, VI</td>
<td>First Coast Service Options, Inc.</td>
</tr>
<tr>
<td>J (10)</td>
<td>TN, GA, AL</td>
<td>Palmetto GBA, LLC</td>
</tr>
<tr>
<td>M (11)</td>
<td>NC, SC, WV, VA (excluding below)</td>
<td>Palmetto GBA, LLC</td>
</tr>
<tr>
<td>L (12)</td>
<td>DE, MD, PA, NJ, DC (includes Arlington & Fairfax counties and the city of Alexandria in VA)</td>
<td>Novitas Solutions, Inc.</td>
</tr>
<tr>
<td>K (13 & 14)</td>
<td>NY, CT, MA, RI, VT, ME, NH</td>
<td>National Government Services, Inc. (NGS)</td>
</tr>
<tr>
<td>15</td>
<td>KY, OH</td>
<td>CGS Administrators, LLC</td>
</tr>
</tbody>
</table>
Appendix 3 – CLINICAL LITERATURE REVIEW

OS = overall survival; PFS = progression-free survival; ORR = objective response rate; CR = complete response; PR = partial response; DoR = duration of response; TTP = time to progression; FFS = failure-free survival; EFS = event-free survival; PFR = progression free rate; CBR = clinical benefit rate; SCC = squamous cell carcinoma; FOLFOX = 5-FU/leucovorin/oxaliplatin; FOLFIRI = 5-FU/leucovorin/irinotecan; CapeOX = capecitabine/oxaliplatin

Colorectal Cancer (CRC)

First-line therapy of metastatic disease

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab (bev) + irinotecan + bolus 5FU+ leucovorin (IFL)</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 3 (Study AVF2107), randomized, double-blind, active-controlled</td>
<td>IFL + placebo</td>
<td>OS</td>
<td>First-line</td>
<td>• The addition of bevacizumab to fluorouracil-based combination chemotherapy results in statistically significant improvement in survival (4.7 month increase in median OS) among patients with metastatic colorectal cancer</td>
</tr>
</tbody>
</table>
| Bevacizumab + FOLFOX | 2A | Yes | Phase 2 (TREE study), randomized, open-label | Bevacizumab + bFOL (bolus FU, LV, oxaliplatin) vs. bevacizumab + CapeOX | Incidence of grade 3/4 AEs | First-line | • The addition of bevacizumab to oxaliplatin and fluoropyrimidine regimens is well tolerated as first-line treatment of mCRC and does not markedly change overall toxicity.
• First-line oxaliplatin and fluoropyrimidine-based therapy plus bevacizumab resulted in a median OS of approximately 2 years. |
<p>| Bevacizumab + FOLFOX or XELOX | 2A | Yes | Phase 3 (N016966), randomized | Placebo + FOLFOX or XELOX | PFS | First-line | • The addition of bevacizumab to oxaliplatin-based chemotherapy significantly improved PFS in this first-line trial in patients with mCRC |</p>
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Phase</th>
<th>Randomized</th>
<th>Sub-study</th>
<th>Outcome</th>
<th>Setting</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + FOLFOXIRI</td>
<td>2A</td>
<td>Yes</td>
<td>PHASE 3</td>
<td>PFS</td>
<td>First-line</td>
<td>Overall survival differences did not reach statistical significance, and response rate was not improved by the addition of bevacizumab.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(TRIBE), randomized, open-label, multi-center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab + Capetitabine</td>
<td></td>
<td></td>
<td>Phase 3</td>
<td>PFS</td>
<td>First-line</td>
<td>FOLFOXIRI plus bevacizumab, as compared with FOLFIRI plus bevacizumab, improved the outcome in patients with metastatic colorectal cancer and increased the incidence of some adverse events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(AVEX), open-label, randomized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab + FU + LV</td>
<td></td>
<td></td>
<td>Phase 2</td>
<td>OS</td>
<td>First-line</td>
<td>Addition of bevacizumab to FU/LV as first-line therapy in CRC patients who were not considered optimal candidates for first-line irinotecan treatment provided clinically significant patient benefit, including statistically significant improvement in progression-free survival.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>randomized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cetuximab + FOLFIRI</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 3</td>
<td>PFS</td>
<td>First-line</td>
<td>First-line treatment with cetuximab plus FOLFIRI, as compared with FOLFIRI alone, reduced the risk of progression of metastatic colorectal cancer. The benefit of cetuximab was limited to patients with KRAS wild-type tumors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(CRYSTAL), randomized, open-label, multi-center</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Bevacizumab + FOLFOXIRI**:
 - Phase 3 (TRIBE), randomized, open-label, multi-center
 - Updated analysis

- **Bevacizumab + Capetitabine**:
 - Phase 3 (AVEX), open-label, randomized
 - Updated analysis

- **Bevacizumab + FU + LV**:
 - Phase 2, randomized
 - FU + LV + placebo

- **Cetuximab + FOLFIRI**:
 - Phase 3 (CRYSTAL), randomized, open-label, multi-center
 - Updated analysis
<table>
<thead>
<tr>
<th>Cetuximab + FOLFOX</th>
<th>2A (for KRAS/NRAS WT and left-sided tumors only)</th>
<th>Yes</th>
<th>Phase 3 (TAILOR), open-label, randomized</th>
<th>FOLFOX</th>
<th>PFS</th>
<th>First-line</th>
<th>• Combination of FOLFOX with cetuximab is effective in first-line treatment of patients with RAS wild-type mCRC with a benefit in both PFS and OS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panitumumab + FOLFOX</td>
<td>2A (for KRAS/NRAS WT and left-sided tumors only)</td>
<td>Yes</td>
<td>Phase 3 (PRIME), randomized, open-label</td>
<td>FOLFOX</td>
<td>PFS</td>
<td>First-line</td>
<td>• Additional RAS mutations predicted a lack of response in patients who received panitumumab-FOLFOX4. In patients who had metastatic colorectal cancer without RAS mutations, improvements in overall survival were observed with panitumumab-FOLFOX4 therapy.</td>
</tr>
<tr>
<td>Panitumumab+ FOLFIRI</td>
<td>2A (for KRAS/NRAS WT and left-sided tumors only)</td>
<td>No</td>
<td>Phase 2, single-arm</td>
<td>N/A</td>
<td>------</td>
<td>First-line</td>
<td>• A favorable efficacy (ORR 56%) was observed in patients with KRAS wild-type CRC receiving first-line panitumumab plus FOLFIRI treatment.</td>
</tr>
<tr>
<td>Bevacizumab + FOLFIRI</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 3 (FIRE-3), randomized, open-label</td>
<td>Cetuximab + FOLFIRI</td>
<td>ORR</td>
<td>First-line</td>
<td>• The proportion of patients who achieved an objective response did not significantly differ between the FOLFIRI plus cetuximab and FOLFIRI plus bevacizumab. A longer association in OS with FOLFIRI plus cetuximab was demonstrated for patients with KRAS exon 2 wild-type metastatic colorectal cancer. • More benefit was shown for cetuximab in left-sided tumors than bevacizumab.</td>
</tr>
<tr>
<td>Bevacizumab + FOLFOX or FOLFIRI</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 3 (CALGB/SWOG), randomized</td>
<td>Cetuximab + FOLFOX or FOLFIRI</td>
<td>OS</td>
<td>First-line</td>
<td>• Among patients with KRAS WT untreated advanced or metastatic colorectal cancer, there was no significant difference in overall survival between the addition of cetuximab vs bevacizumab to chemotherapy as initial biologic treatment.</td>
</tr>
</tbody>
</table>
Retrospective analysis – Impact of primary tumor location

- In KRAS wild type mCRC, patients with left-sided primary tumor have superior OS and PFS versus patients with right-sided primary tumor.

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panitumumab + FOLFOX</td>
<td>2A (for KRAS/ NRAS WT and left-sided tumors only)</td>
<td>Yes</td>
<td>Phase 2 (PEAK), randomized, multi-center</td>
<td>Bevacizumab + FOLFOX</td>
<td>PFS</td>
<td>First-line</td>
<td>PFS was similar and OS was improved with panitumumab relative to bevacizumab when combined with FOLFOX in patients with wild-type KRAS tumors.</td>
</tr>
<tr>
<td>Bevacizumab-containing regimen</td>
<td>2A</td>
<td>Yes</td>
<td>Retrospective meta-analysis of FIRE-3, CALGB/ SWOG 80405, & PEAK</td>
<td>Erbitux or Vectibix-containing regimens</td>
<td>------</td>
<td>First-line</td>
<td>RAS wild-type left-sided CRC had a significantly greater survival benefit from anti-EGFR treatment compared with anti-VEGF treatment when added to standard chemo. Avastin was associated with a longer survival in patients with right-sided CRC.</td>
</tr>
</tbody>
</table>

After first-line bevacizumab-containing regimen in metastatic disease

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab (bev) + fluoropyrimidine-based chemotherapy including either irinotecan or oxaliplatin</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 3 (TML study), prospective, randomized, open-label, multinational, controlled</td>
<td>Fluoropyrimidine-based chemotherapy including either irinotecan or oxaliplatin</td>
<td>OS</td>
<td>Previous treatment with bev + fluoropyrimidine and either oxaliplatin or irinotecan</td>
<td>Maintenance of VEGF inhibition with bevacizumab plus standard second-line chemotherapy beyond disease progression has clinical benefits in OS and PFS in patients with metastatic colorectal cancer. Treatment effects were independent of KRAS mutation status.</td>
</tr>
</tbody>
</table>

Second-line therapy for metastatic disease
<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + 5-fluorouracil (5-FU) + leucovorin + oxaliplatin (FOLFOX4)</td>
<td>2A (preferred after previous oxaliplatin- or fluoropyrimidined-based therapy without irinotecan or oxaliplatin)</td>
<td>Yes</td>
<td>Phase 3 (Study E3200), open-label, randomized, active-controlled, multicenter</td>
<td>5-fluorouracil (5-FU) + leucovorin + oxaliplatin (FOLFOX4)</td>
<td>OS</td>
<td>Second-line</td>
<td>• The addition of bevacizumab to oxaliplatin, fluorouracil, and leucovorin improves survival duration for patients with previously treated metastatic colorectal cancer</td>
</tr>
<tr>
<td>Bevacizumab + FOLFIRI</td>
<td>2A (preferred after previous oxaliplatin- or fluoropyrimidined-based therapy without irinotecan or oxaliplatin)</td>
<td>Yes</td>
<td>Phase 2 (SPIRITT), randomized, multi-center</td>
<td>Panitumumab + FOLFIRI</td>
<td>PFS</td>
<td>Second-line</td>
<td>• Panitumumab or bevacizumab with FOLFIRI as second-line treatment had efficacy similar in patients whose disease progressed during oxaliplatin-based chemotherapy with bevacizumab</td>
</tr>
<tr>
<td>Panitumumab</td>
<td>2A</td>
<td>No</td>
<td>Phase 3, open-label, randomized</td>
<td>Best supportive care (BSC)</td>
<td>PFS</td>
<td>After disease progression on oxaliplatin/irinotecan-based chemotherapy</td>
<td>• Panitumumab monotherapy efficacy in mCRC is confined to patients with WT KRAS tumors</td>
</tr>
<tr>
<td>Panitumumab</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 3, randomized</td>
<td>Best supportive care (BSC)</td>
<td>OS</td>
<td>After disease progression on oxaliplatin/irinotecan-based chemotherapy</td>
<td>• Panitumumab significantly improved OS in wild-type KRAS exon 2 mCRC.</td>
</tr>
<tr>
<td>Combination</td>
<td>2A</td>
<td>Yes/No</td>
<td>Criteria</td>
<td>FOLFIRI</td>
<td>Endpoints</td>
<td>Phase</td>
<td>Outcomes</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Panitumumab + FOLFIRI</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 3 (Study 181), randomized</td>
<td>FOLFIRI</td>
<td>PFS, OS</td>
<td>Second-line</td>
<td>Panitumumab plus FOLFIRI significantly improved PFS, however the improvement in OS was nonsignificant</td>
</tr>
<tr>
<td>Cetuximab + irinotecan</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 3 (EPIC), multi-center, open-label</td>
<td>Irinotecan</td>
<td>OS</td>
<td>After fluoropyrimidine and oxaliplatin</td>
<td>Cetuximab and irinotecan improved PFS and ORR versus irinotecan alone. OS was similar between study groups</td>
</tr>
<tr>
<td>Panitumumab</td>
<td>2A</td>
<td>No</td>
<td>Phase 3 (ASPECCT), randomized, multi-center, open-label, non-inferiority</td>
<td>Cetuximab</td>
<td>Non-inferiority OS</td>
<td>Chemo-refractory</td>
<td>Panitumumab is non-inferior to cetuximab. These agents provide similar overall survival benefit in patients with KRAS wild type mCRC.</td>
</tr>
<tr>
<td>Ziv-Aflibercept+ FOLFIRI</td>
<td>2A (after regimen NOT containing irinotecan)</td>
<td>Yes</td>
<td>Phase 3 (VELOUR), randomized, Subgroup analysis</td>
<td>FOLFIRI + placebo</td>
<td>OS</td>
<td>Second-line after oxaliplatin-based regimen</td>
<td>Aflibercept in combination with FOLFIRI conferred a statistically significant survival benefit over FOLFIRI combined with placebo in patients with mCRC previously treated with oxaliplatin. Benefit in OS was also shown in patients with prior bevacizumab treatment</td>
</tr>
<tr>
<td>Ramucirumab + FOLFIRI</td>
<td>2A (after regimen NOT containing irinotecan)</td>
<td>Yes</td>
<td>Phase 3 (RAISE), randomized, double-blind, multi-center</td>
<td>FOLFIRI + placebo</td>
<td>OS</td>
<td>After first-line fluoro + oxali + bev</td>
<td>Ramucirumab plus FOLFIRI significantly improved overall survival compared with placebo plus FOLFIRI as second-line treatment for patients with metastatic colorectal carcinoma</td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 2</td>
<td>N/A</td>
<td>ORR, PFS rate</td>
<td>After 2-4 previous therapies</td>
<td>Mismatch-repair status predicted clinical benefit of immune checkpoint blockade with pembrolizumab in patients with CRC</td>
</tr>
</tbody>
</table>
Nivolumab +/- ipilimumab

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivolumab +/- ipilimumab</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 2 (CheckMate-142), open-label, multi-center</td>
<td>N/A</td>
<td>ORR</td>
<td></td>
<td>• Nivolumab provided durable responses and disease control in pre-treated patients with dMMR/MSI-H metastatic colorectal cancer</td>
</tr>
</tbody>
</table>

Bevacizumab + FOLFIRI or FOLFOX

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + FOLFIRI or FOLFOX</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 2 (PRODIGE 18), randomized</td>
<td>Erbitux + FOLFIRI or FOLFOX</td>
<td>PFS</td>
<td></td>
<td>• In wtKRAS mCRC patients progressing after bevacizumab plus chemotherapy, continuation beyond progression with bevacizumab and crossover chemotherapy is associated with a numerically higher but not statistically significant median PFS and OS compared to cetuximab plus chemotherapy.</td>
</tr>
</tbody>
</table>

Non-Squamous Non-Small Cell Lung Cancer (NSCLC)

First-Line Therapy of Recurrent, Locally Advanced, or Metastatic Disease

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + carboplatin + paclitaxel, followed by maintenance therapy with bevacizumab</td>
<td>1 (for adenocarcinoma only; PS 0-1)</td>
<td>Yes</td>
<td>Phase 2/3 (ECOG 4599), randomized</td>
<td>Carboplatin + paclitaxel</td>
<td>OS</td>
<td>First-line</td>
<td>• The addition of bevacizumab to paclitaxel plus carboplatin in the treatment of selected patients with non-small-cell lung cancer has a significant survival benefit with the risk of increased treatment-related deaths</td>
</tr>
</tbody>
</table>

First-Line Therapy of Recurrent, Advanced, or Metastatic Disease - EGFR, ALK negative or unknown, PD-L1 ≥ 50%

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Moda Health Plan, Inc. Medical Necessity Criteria Page 32/63
Pembrolizumab

1 preferred

Yes

Phase 3 (KEYNOTE-024), open-label, randomized

Platinum-based chemotherapy

PFS

First-line

- In patients with advanced NSCLC and PD-L1 expression on at least 50% of tumor cells, pembrolizumab was associated with significantly longer progression-free and overall survival and with fewer adverse events than was platinum-based chemotherapy.

First-Line Therapy of Recurrent, Advanced, or Metastatic Disease - EGFR, ALK negative or unknown, regardless of PD-L1 expression

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atezolizumab + carboplatin + paclitaxel + bevacizumab (ABCP)</td>
<td>1 (for adeno-carcinoma only; PS 0-1)</td>
<td>Yes</td>
<td>Phase 3 (IMpower150), open-label, randomized (1:1:1)</td>
<td>Atezolizumab + carboplatin + paclitaxel (ACP) vs. bevacizumab + carboplatin + paclitaxel (BCP)</td>
<td>PFS</td>
<td>First-line</td>
<td>The addition of atezolizumab to bevacizumab plus chemotherapy significantly improved progression-free survival and overall survival among patients with metastatic nonsquamous NSCLC, regardless of PD-L1 expression and EGFR or ALK genetic alteration status.</td>
</tr>
<tr>
<td>Pembrolizumab + carboplatin (or cisplatin) + pemetrexed</td>
<td>1 preferred (for adeno-carcinoma only; PS 0-1)</td>
<td>Yes</td>
<td>Phase 3 (KEYNOTE-189), double-blind, randomized (2:1)</td>
<td>Carboplatin (or cisplatin) + pemetrexed + placebo</td>
<td>OS PFS</td>
<td>First-line</td>
<td>In patients with previously untreated metastatic nonsquamous NSCLC without EGFR or ALK mutations, the addition of pembrolizumab to standard chemotherapy of pemetrexed and a platinum-based drug resulted in significantly longer overall survival and progression-free survival than chemotherapy alone.</td>
</tr>
<tr>
<td>Carboplatin + docetaxel (DCb) or Cisplatin + docetaxel (DC)</td>
<td>1 (for PS 0-1)</td>
<td>No</td>
<td>Phase 3 (TAX 326), randomized, multinational</td>
<td>Cisplatin + vinorelbine (VC)</td>
<td>--------</td>
<td>First-line</td>
<td>DC resulted in a more favorable ORR and OS rate than VC. Both DC and DCb were better tolerated and provided patients with consistently improved QoL compared with VC. These findings demonstrate that a docetaxel plus platinum combination is an effective treatment option with a favorable QoL compared with vinorelbine.</td>
</tr>
</tbody>
</table>
Therapeutic Index for First-Line Treatment of Advanced or Metastatic NSCLC.

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboplatin + paclitaxel (TC)</td>
<td>Phase 3, randomized</td>
<td>OS</td>
<td>First-line</td>
<td>• The four regimens have similar efficacy and different toxicity profiles, and they can be used to treat advanced NSCLC patients.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisplatin + etoposide</td>
<td>Phase 3, randomized</td>
<td>ORR</td>
<td>First-line</td>
<td>• Compared with etoposide-cisplatin, gemcitabine-cisplatin provides a significantly higher response rate and a delay in disease progression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab + cisplatin + gemcitabine</td>
<td>None</td>
<td>PFS</td>
<td>First-line</td>
<td>• Combining bevacizumab (7.5 or 15 mg/kg) with CG significantly improved PFS and objective response rate. Bevacizumab plus platinum-based chemotherapy offers clinical benefit for bevacizumab-eligible patients with advanced NSCLC.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recurrent, Advanced, or Metastatic Disease

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + carboplatin + pemetrexed, followed by pemetrexed +</td>
<td>2A (for adenocarcinoma only; PS 0-1)</td>
<td>No</td>
<td>Phase 3 (PointBreak), randomized</td>
<td>Bevacizumab + carboplatin + paclitaxel, followed by bevacizumab (PacCBev)</td>
<td>OS</td>
<td>First-line</td>
<td>• OS did not improve with the PemCBev regimen compared with the PacCBev regimen, although PFS was significantly improved with PemCBev</td>
</tr>
<tr>
<td>Regimen</td>
<td>NCCN Category</td>
<td>FDA Approved</td>
<td>Trial Design</td>
<td>Comparator</td>
<td>Primary End-Point</td>
<td>Line of Therapy</td>
<td>Conclusion</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Bevacizumab monotherapy (Bevacizumab + carboplatin + paclitaxel, followed by maintenance therapy with bevacizumab)</td>
<td>1 (if previously given)</td>
<td>No</td>
<td>Phase 3 (ECOG 4599), randomized</td>
<td>Carboplatin + paclitaxel, followed by no maintenance therapy</td>
<td>OS</td>
<td>First-line</td>
<td>• The addition of bevacizumab to paclitaxel plus carboplatin in the treatment of selected patients with non-small-cell lung cancer has a significant survival benefit with the risk of increased treatment-related deaths</td>
</tr>
<tr>
<td>Bevacizumab + atezolizumab (Atezolizumab + carboplatin + paclitaxel + bevacizumab, followed by maintenance therapy with atezolizumab +</td>
<td>1 (if previously given)</td>
<td>No</td>
<td>Phase 3 (IMpower150), open-label, randomized (1:1:1)</td>
<td>Atezolizumab + carboplatin + paclitaxel, followed by atezolizumab (ACP) vs. bevacizumab + carboplatin + paclitaxel, followed by</td>
<td>PFS</td>
<td>First-line</td>
<td>• The addition of atezolizumab to bevacizumab plus chemotherapy significantly improved progression-free survival and overall survival among patients with metastatic nonsquamous NSCLC, regardless of PD-L1 expression and EGFR or ALK genetic alteration status</td>
</tr>
<tr>
<td>Regimen</td>
<td>NCCN Category</td>
<td>FDA Approved</td>
<td>Trial Design</td>
<td>Comparator</td>
<td>Primary End-Point</td>
<td>Line of Therapy</td>
<td>Conclusion</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Bevacizumab + standard-of-care (Bev + SOC)</td>
<td>2A</td>
<td>No</td>
<td>Phase 3b (AvaALL), randomized, open-label</td>
<td>Standard-of-care (SOC: erlotinib or docetaxel or pemetrexed)</td>
<td>OS</td>
<td>Second-line after prior bevacizumab plus platinum-doublet chemotherapy and at least 2 cycles of</td>
<td>Results showed that although median OS was longer for patients in the bevacizumab arm plus SOC, it was not significantly longer compared with patients in the SOC alone arm.</td>
</tr>
<tr>
<td>Drug</td>
<td>Maintenance (criteria)</td>
<td>Phase (study)</td>
<td>OS/PFS</td>
<td>Subsequent/Previously treated</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
<td>--</td>
<td>--------</td>
<td>-------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nivolumab</td>
<td>Yes</td>
<td>Phase 3 (CheckMate 057), randomized, open-label</td>
<td>Docetaxel</td>
<td>OS</td>
<td>Among patients with advanced nonsquamous NSCLC that had progressed during or after platinum-based chemotherapy, overall survival was longer with nivolumab than with docetaxel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pembrolizumab (2mg/kg or 10mg/kg)</td>
<td>Yes (after platinum therapy)</td>
<td>Phase 2/3 (KEYNOTE-010), randomized (1:1:1), open-label</td>
<td>Docetaxel</td>
<td>OS/PFS</td>
<td>Previously treated</td>
<td>Pembrolizumab prolongs overall survival compared to docetaxel and has a favorable benefit-to-risk profile in patients with previously treated, PD-L1-positive, advanced non-small-cell lung cancer.</td>
<td></td>
</tr>
<tr>
<td>Atezolizumab</td>
<td>Yes (after platinum therapy)</td>
<td>Phase 3 (OAK), open-label, multicenter randomized (1:1)</td>
<td>Docetaxel</td>
<td>OS</td>
<td>Second- or third-line</td>
<td>Atezolizumab treatment results in a statistically significant and clinically relevant improvement in OS versus docetaxel in second- and third-line NSCLC, regardless of PD-L1 expression and histology</td>
<td></td>
</tr>
<tr>
<td>Ramucirumab + docetaxel</td>
<td>Yes (after platinum therapy)</td>
<td>Phase 3 (REVEL), multicenter, double-blind, randomized (1:1)</td>
<td>Docetaxel + placebo</td>
<td>OS</td>
<td>Second-line after platinum-based regimen</td>
<td>Ramucirumab plus docetaxel improves survival as second-line treatment of patients with stage IV NSCLC</td>
<td></td>
</tr>
</tbody>
</table>

Cervical Cancer

Recurrent or Metastatic Disease, First-line Therapy
<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + cisplatin + paclitaxel</td>
<td>1 preferred</td>
<td>Yes</td>
<td>Phase 3 (GOG-0240), randomized, controlled, open-label</td>
<td>Cisplatin + paclitaxel vs. topotecan + paclitaxel +/- bevacizumab vs. topotecan + paclitaxel</td>
<td>OS</td>
<td>Recurrent or persistent disease</td>
<td>Bevacizumab improved survival in patients with advanced cervical cancer with by 3.5 months compared to chemotherapy alone.</td>
</tr>
<tr>
<td>Cisplatin + paclitaxel (TP)</td>
<td>1 preferred</td>
<td>Yes</td>
<td>Phase 3 (GOG 169), randomized</td>
<td>Cisplatin</td>
<td>ORR, PFS, OS</td>
<td>First-line</td>
<td>Combination therapy with cisplatin and paclitaxel is superior to cisplatin alone with respect to response rate and PFS.</td>
</tr>
<tr>
<td>Cisplatin + paclitaxel (TP)</td>
<td>1 preferred</td>
<td>No</td>
<td>Phase 3 (JCOG0505), randomized</td>
<td>Carboplatin + paclitaxel (TC)</td>
<td>OS</td>
<td>≤ 1 platinum-regimen and no prior taxane</td>
<td>TC was non-inferior to TP in patients with metastatic or recurrent cervical cancer. However, among patients who had not received prior cisplatin therapy, TC demonstrated to be inferior to TP.</td>
</tr>
<tr>
<td>Bevacizumab + topotecan + paclitaxel</td>
<td>1 preferred</td>
<td>Yes</td>
<td>See data for bevacizumab + cisplatin + paclitaxel; Phase 3 (GOG-0240)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carboplatin + paclitaxel</td>
<td>1 preferred</td>
<td>No</td>
<td>See data for cisplatin + paclitaxel: Phase 3 (JCOG0505)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regimen</td>
<td>NCCN Category</td>
<td>FDA Approved</td>
<td>Trial Design</td>
<td>Comparator</td>
<td>Primary End-Point</td>
<td>Line of Therapy</td>
<td>Conclusion</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Bevacizumab + carboplatin + paclitaxel</td>
<td>2A preferred</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>6-mon PFS</td>
<td>Second-line or third-line</td>
<td>• Bevacizumab is active in second-line and third-line treatment with an ORR of 11%</td>
</tr>
</tbody>
</table>

| Pembrolizumab | 2A preferred | Yes (for MSI-H/dMMR or PD-L1 positive tumors) | Phase 2 (KEYNOTE-158), multi-center, open-label, multi-cohort | N/A | ORR | Second-line or later | • Pembrolizumab demonstrated anti-tumor activity with an ORR of 16% PD-L1 expressing refractory cervical cancer |

Breast Cancer

HER-2 Negative Recurrent or Metastatic Disease for patients with high tumor burden, rapidly progressive disease, or visceral crisis

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + paclitaxel (AT)</td>
<td>2A</td>
<td>No</td>
<td>Phase 3 (E2100), open-label, randomized</td>
<td>Paclitaxel (T)</td>
<td>PFS</td>
<td>First-line</td>
<td>• Initial therapy of metastatic breast cancer with paclitaxel plus bevacizumab prolongs progression-free survival by 5.9 months, but not overall survival, as compared with paclitaxel alone</td>
</tr>
<tr>
<td>Treatment</td>
<td>Score</td>
<td>Approved</td>
<td>Study Details</td>
<td>Endpoint</td>
<td>Line of Therapy</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>----------</td>
<td>--</td>
<td>----------</td>
<td>-----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Bevacizumab + chemotherapy (capecitabine, taxane, or anthracycline)</td>
<td>2A</td>
<td>No</td>
<td>Phase 3 (RIBBON-1), randomized, double-blind, placebo-controlled</td>
<td>Chemotherapy + placebo</td>
<td>PFS</td>
<td>First-line • The combination of BV with Cape, Tax, or Anthra improves clinical benefit in terms of increased PFS in first-line treatment of metastatic breast cancer however a significant increase in OS was not observed.</td>
<td></td>
</tr>
<tr>
<td>Bevacizumab + docetaxel</td>
<td>None</td>
<td>No</td>
<td>Phase 3 (AVADO), randomized, double-blind</td>
<td>Docetaxel + placebo</td>
<td>PFS</td>
<td>First-line • Bevacizumab 15 mg/kg every 3 weeks increased PFS when combined with docetaxel as first-line therapy for MBC compared with docetaxel plus placebo.</td>
<td></td>
</tr>
<tr>
<td>Doxorubicin + cyclophosphamide (AC)</td>
<td>2A</td>
<td>No</td>
<td>Phase 3, randomized, multi-center</td>
<td>Doxorubicin + docetaxel (AT)</td>
<td>TTP</td>
<td>First-line • AT significantly improves TTP and ORR compared with AC in patients with MBC, but there is no difference in OS</td>
<td></td>
</tr>
<tr>
<td>Epirubicin + cyclophosphamide (EC)</td>
<td>2A</td>
<td>No</td>
<td>Phase 3 (AB01), randomized, multi-center</td>
<td>Epirubicin + paclitaxel (EP)</td>
<td>PFS</td>
<td>First-line • In terms of progression-free survival and overall survival, there was no evidence of a difference between EP and EC. The data demonstrate no additional advantage to using EP instead of EC as first-line chemotherapy for MBC in taxane-naive patients.</td>
<td></td>
</tr>
<tr>
<td>Docetaxel + capecitabine (DC)</td>
<td>2A</td>
<td>No</td>
<td>Phase 3, randomized, multi-center</td>
<td>Docetaxel + epirubicin (DE)</td>
<td>TTP</td>
<td>First-line • The DE and DC regimens have similar efficacy but different toxicity. Either regimen can be used as front-line treatment of ABC.</td>
<td></td>
</tr>
<tr>
<td>Gemcitabine + paclitaxel (GT)</td>
<td>2A</td>
<td>No</td>
<td>Phase 3, randomized</td>
<td>Paclitaxel (T)</td>
<td>OS</td>
<td>First-line (after adjuvant anthracycline) • Gemcitabine added to paclitaxel is effective therapy for women with advanced breast cancer who previously received anthracyclines with a significant improvement in OS and TTP.</td>
<td></td>
</tr>
<tr>
<td>Regimen</td>
<td>NCCN Category</td>
<td>FDA Approved</td>
<td>Trial Design</td>
<td>Comparator</td>
<td>Primary End-Point</td>
<td>Line of Therapy</td>
<td>Conclusion</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>-------------------------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Nab-paclitaxel + bevacizumab</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 3, randomized</td>
<td>Ixabepilone + bevacizumab vs. paclitaxel + bevacizumab</td>
<td>PFS</td>
<td>First-line</td>
<td>PFS and OS for nab-paclitaxel was not superior to paclitaxel with a trend toward inferiority</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Toxicity was increased for nab-paclitaxel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Renal Cell Carcinoma

First-line therapy relapsed or stage IV disease – clear cell histology

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + interferon alfa</td>
<td>1 for all risk groups</td>
<td>Yes</td>
<td>Phase 3 (AVOREN), multi-center, randomized, double-blind</td>
<td>Interferon-alfa (IFN-α) + placebo</td>
<td>OS</td>
<td>First-line</td>
<td>The combination of bevacizumab with interferon alfa as first-line treatment in patients with metastatic renal cell carcinoma results in a significant improvement in progression-free survival, compared with interferon alfa alone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab + interferon alfa</td>
<td>1 for all risk groups</td>
<td>Yes</td>
<td>Phase 3 (CALGB 90206), randomized</td>
<td>IFN-α</td>
<td>OS</td>
<td>First-line</td>
<td>Avastin in combination with interferon alfa produced a superior PFS and higher ORR than interferon alfa alone. However, there were no significant differences in OS between the two groups and more toxicity associated with the combination arm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pazopanib</td>
<td>1 preferred for favorable risk 1 for poor/intermediate risk</td>
<td>Yes</td>
<td>Phase 3 (VEG105192), open-label, double-blind, randomized, multi-center</td>
<td>Placebo</td>
<td>PFS</td>
<td>First-line or after cytokine therapy</td>
<td>Pazopanib demonstrated significant improvement in PFS and tumor response compared with placebo in treatment-naive and cytokine-pretreated patients with advanced and/or metastatic RCC.</td>
</tr>
<tr>
<td>Drug</td>
<td>OS Criteria</td>
<td>Final OS results</td>
<td>Comparator</td>
<td>PFS</td>
<td>OS</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Sunitinib</td>
<td>1 preferred for favorable risk 1 for poor/intermediate risk</td>
<td>Yes</td>
<td>Phase 3, randomized, multi-center</td>
<td>IFN-α</td>
<td>PFS</td>
<td>First-line • PFS and ORR were both significantly longer/higher with sunitinib than IFN-α. • A trend towards OS advantage of sunitinib over IFN-α was demonstrated.</td>
<td></td>
</tr>
<tr>
<td>Nivolumab + ipilimumab</td>
<td>1 preferred for intermediate/poor-risk 2A for favorable risk</td>
<td>Yes for intermediate/poor-risk</td>
<td>Phase 3 (CheckMate 214), open-label, multi-center</td>
<td>Sunitinib</td>
<td>ORR PFS OS</td>
<td>First-line • Overall survival and objective response rates were significantly higher with nivolumab plus ipilimumab than with sunitinib among intermediate- and poor-risk patients with previously untreated advanced renal-cell carcinoma.</td>
<td></td>
</tr>
<tr>
<td>Nivolumab + ipilimumab</td>
<td>1 preferred for intermediate/poor-risk 2A for favorable risk</td>
<td>Yes for intermediate/poor-risk</td>
<td>Phase 1 (CheckMate 016)</td>
<td>N/A</td>
<td>Safety</td>
<td>All lines of therapy • Nivolumab plus ipilimumab demonstrated an ORR of 40.4% in patients of all risk-groups, including patients who received prior therapy.</td>
<td></td>
</tr>
<tr>
<td>Temsirolimus</td>
<td>1 for poor risk</td>
<td>Yes</td>
<td>Phase 3 (Global ARCC), multi-center</td>
<td>IFN-α vs. temsirolimus + IFN-α</td>
<td>OS</td>
<td>First-line • As compared with interferon alfa, temsirolimus improved overall survival among patients with metastatic renal-cell carcinoma and a poor prognosis</td>
<td></td>
</tr>
<tr>
<td>Cabozantinib</td>
<td>2A preferred for poor/intermediate risk</td>
<td>Yes</td>
<td>Phase 2 (CABOSUN), open-label, randomized</td>
<td>Sunitinib</td>
<td>PFS</td>
<td>First-line • Cabozantinib demonstrated a significant clinical benefit in PFS and ORR over standard-of-care sunitinib as first-line therapy in patients with intermediate- or poor-risk mRCC.</td>
<td></td>
</tr>
</tbody>
</table>
Subsequent therapy for relapsed or stage IV disease – clear cell histology

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab</td>
<td>2B</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nivolumab + ipilimumab</td>
<td>1 preferred</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabozantinib</td>
<td>1 preferred</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axitinib</td>
<td>1</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenvatinib + everolimus</td>
<td>1</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relapsed or stage IV non-clear cell histology

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>12-mon PFS</td>
<td>First- or second-line</td>
<td>• PFS with bevacizumab alone ranged from 6-25 months and suggest activity with minimal toxicity.</td>
</tr>
</tbody>
</table>
| Bevacizumab + everolimus | 2A | No | Phase 2, single-center | N/A | PFS | First-line | • Tumors with significant papillary or chromophobe elements showed higher PFS and ORR than other histologies.
<p>| | | | | | | | • Subjects with other variants (medullary RCC and unclassified RCC without papillary features), achieved little or no benefit from everolimus plus bevacizumab. |</p>
<table>
<thead>
<tr>
<th>Drug</th>
<th>Category</th>
<th>Prior</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunitinib</td>
<td>2A preferred</td>
<td>Yes</td>
<td>Phase 2</td>
<td>N/A</td>
<td>ORR</td>
<td></td>
<td>Clinical activity with sunitinib in non-clear cell RCC is supported by an ORR of 36% and PFS of 6.4 months.</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>2A preferred</td>
<td>Yes</td>
<td>Phase 2 (ASPEN), multi-center, open-label, randomized</td>
<td>Everolimus</td>
<td>PFS</td>
<td>First-line</td>
<td>Sunitinib improved PFS compared with everolimus in patients with metastatic non-clear cell RCC.</td>
</tr>
<tr>
<td>Bevacizumab + erlotinib</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>ORR</td>
<td>First- and second-line</td>
<td>Combination of bevacizumab plus erlotinib demonstrated activity in patients with advanced papillary RCC, particularly in patients with HLRCC (ORR 60% for HLRCC and 29% for sporadic papillary RCC).</td>
</tr>
<tr>
<td>Temsirolimus</td>
<td>1 (for poor prognosis features) 2A (all others)</td>
<td>No</td>
<td>Retrospective analysis of phase 3 Global ARCC Trial</td>
<td>N/A</td>
<td>----------</td>
<td>First-line</td>
<td>Temsirolimus appears to be efficacious in patients with clear cell and non-clear cell histologies and can, therefore, be used for the treatment of all types of RCC</td>
</tr>
</tbody>
</table>

CNS Cancer

Recurrent anaplastic glioma

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + chemotherapy</td>
<td>2B</td>
<td>No</td>
<td>Retrospective analysis</td>
<td>N/A</td>
<td>----------</td>
<td>Recurrent gliomas</td>
<td>Combination therapy with bevacizumab and chemotherapy demonstrated a 6 month PFS rate of 32% for patients with anaplastic glioma and 42% for patients with glioblastoma.</td>
</tr>
<tr>
<td>Drug</td>
<td>Grade</td>
<td>Status</td>
<td>Study Design</td>
<td>Tumor Type</td>
<td>Study Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>2A</td>
<td>No</td>
<td>Retrospective analysis</td>
<td>N/A</td>
<td>• Bevacizumab demonstrated efficacy in patients with recurrent alkylator-refractory anaplastic oligodendroglioma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>2A</td>
<td>No</td>
<td>Retrospective analysis</td>
<td>N/A</td>
<td>• Bevacizumab demonstrated efficacy with a 6 month PFS rate of 60%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab + irinotecan</td>
<td>2A</td>
<td>No</td>
<td>Retrospective analysis</td>
<td>N/A</td>
<td>• Bevacizumab plus irinotecan is clinically active with a 6-mon PFS rate of 42%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab + irinotecan</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>• The combination of bevacizumab and irinotecan is an active regimen for recurrent grade III-IV glioma with a 6-mon PFS of 38% and 6-mon OS of 72%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab + fotemustine</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>ORR 6-mon PFS</td>
<td>• Combination of bevacizumab and fotemustine in recurrent gliomas resulted an ORR of 35%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temozolomide</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 2, open-label, multi-center</td>
<td>6-mon PFS</td>
<td>• Temozolomide demonstrated good single-agent activity with a 12-month PFS and OS rate of 24% and 56%, respectively, at first relapse in patients with malignant astrocytoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regimen</td>
<td>NCCN Category</td>
<td>FDA Approved</td>
<td>Trial Design</td>
<td>Comparator</td>
<td>Primary End-Point</td>
<td>Line of Therapy</td>
<td>Conclusion</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Carmustine + α-difluoromethylornithine (DFMO)</td>
<td>2A</td>
<td>No</td>
<td>Clinical trial</td>
<td>N/A</td>
<td>Recurrent anaplastic gliomas and glioblastomas</td>
<td>• Carmustine + DFMO demonstration clinical activity with a partial response rate of 9.5% and stable disease in 47.6% in patients with anaplastic gliomas.</td>
<td></td>
</tr>
<tr>
<td>Procarbazine + lomustine + vincristine (PCV)</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>Recurrent low-grade oligodendrogliomas and oligoastrocytomas</td>
<td>• Chemotherapy with PCV is effective in the treatment of recurrent low-grade oligodendrogliomas and oligoastrocytomas</td>
<td></td>
</tr>
</tbody>
</table>

Recurrent glioblastoma

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 2 (AVF3708g, BRAIN study), multi-center, open-label, non-comparative</td>
<td>Bevacizumab (bev) + irinotecan (CPT)</td>
<td>6-mon PFS ORR</td>
<td>Recurrent GBM</td>
<td>• Bevacizumab alone or in combination with irinotecan appeared to be better than historical control serious with a 6-mon PFS rate of 43-50%.</td>
</tr>
<tr>
<td>Bevacizumab + lomustine (bev + CCNU)</td>
<td>2A</td>
<td>No</td>
<td>Phase 3 (EORTC 26101), multi-center, randomized, open-label</td>
<td>Lomustine</td>
<td>OS</td>
<td>Recurrent GBM</td>
<td>• Treatment with bevacizumab plus lomustine prolonged PFS however did not confer a survival advantage over treatment with lomustine alone in patients with progressive GBM.</td>
</tr>
<tr>
<td>Drug Combination</td>
<td>2A</td>
<td>Yes/No</td>
<td>Phase</td>
<td>Study Design</td>
<td>Treatment</td>
<td>Disease</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>----</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Bevacizumab + lomustine (bev + CCNU)</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 2 (BELOB), randomized, open-label, multi-center</td>
<td>Single-agent bevacizumab or lomustine</td>
<td>9-mon OS</td>
<td>Recurrent GBM</td>
<td>• Bevacizumab plus lomustine demonstrated increased effectiveness with a 9 months OS rate of 63% compared to either agent alone. (However, a benefit in OS was not observed in the phase III EORTC 26101 trial).</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 2</td>
<td>N/A</td>
<td>6-mon PFS</td>
<td>Recurrent GBM</td>
<td>• Single-agent bevacizumab has clinical activity in patients with recurrent GBM with a PFS of 16 weeks and OS of 31 weeks</td>
</tr>
<tr>
<td>Bevacizumab + irinotecan</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>--</td>
<td>Recurrent GBM</td>
<td>• Bevacizumab and irinotecan is an effective treatment for recurrent glioblastoma with a 6-mon PFS of 46% and 6-mon OS of 77%.</td>
</tr>
<tr>
<td>Bevacizumab + fotemustine</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>ORR 6-mon PFS</td>
<td>Recurrent glioma</td>
<td>• Combination of bevacizumab and fotemustine in recurrent gliomas resulted an ORR of 35%</td>
</tr>
<tr>
<td>Temozolomide (TMZ)</td>
<td>2A</td>
<td>No</td>
<td>Phase 2, randomized, multi-center, open-label</td>
<td>Procarbazine</td>
<td>6-mon PFS</td>
<td>First-relapse</td>
<td>• Temozolomide is effective in the treatment of patients with recurrent glioblastoma with a 6-month PFS rate of 21%.</td>
</tr>
<tr>
<td>Temozolomide (TMZ)</td>
<td>2A</td>
<td>No</td>
<td>Phase 2 (DIRECTOR trial)</td>
<td>N/A</td>
<td>TTF</td>
<td>Rechallenge with TMZ at first-progression</td>
<td>• Temozolomide rechallenge is a treatment option for MGMT promoter-methylated recurrent glioblastoma with a TTF of 3.2 months.</td>
</tr>
<tr>
<td>Temozolomide (TMZ)</td>
<td>2A</td>
<td>No</td>
<td>Phase 2 (RESCUE), multi-center</td>
<td>N/A</td>
<td>--</td>
<td>Recurrent glioma (after previous TMZ treatment)</td>
<td>• Rechallenge with TMZ demonstrated a 6-month PFS rate between 23-36%.</td>
</tr>
<tr>
<td>Regimen</td>
<td>NCCN Category</td>
<td>FDA Approved</td>
<td>Trial Design</td>
<td>Comparator</td>
<td>Primary End-Point</td>
<td>Line of Therapy</td>
<td>Conclusion</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Temozolomide (TMZ)</td>
<td>2A</td>
<td>No</td>
<td>Retrospective study</td>
<td>N/A</td>
<td>------</td>
<td>Non-progressive disease at first MRI after completion of TMZ concurrent with and adjuvant to radiotherapy, a treatment-free interval (TFI) of at least 8 weeks and received TMZ rechallenge at the time of progression</td>
<td>• TFI ≥5 months represents a predictor of retained TMZ sensitivity</td>
</tr>
<tr>
<td>Lomustine (CCNU)</td>
<td>2A</td>
<td>Yes</td>
<td>See Phase 3 (EORTC 26101) above</td>
<td>N/A</td>
<td>------</td>
<td>Recurrent glioblastoma</td>
<td>• Carmustine demonstrated a 6-month PFS rate of 17.5%</td>
</tr>
<tr>
<td>Carmustine (BCNU)</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 2</td>
<td>N/A</td>
<td>------</td>
<td>Recurrent glioblastoma</td>
<td>• Carmustine demonstrated a 6-month PFS rate of 17.5%</td>
</tr>
<tr>
<td>Procabazine + lomustine + vincristine (PCV)</td>
<td>2A</td>
<td>No</td>
<td>Retrospective cohort study</td>
<td>Bevacizumab + irinotecan</td>
<td>------</td>
<td>Second-line</td>
<td>• Bevacizumab plus irinotecan had higher response rates, almost twice the OS, and a lower degree of toxicity in contrast to the PCV group.</td>
</tr>
<tr>
<td>Procabazine + lomustine + vincristine (PCV)</td>
<td>2A</td>
<td>No</td>
<td>Retrospective analysis</td>
<td>N/A</td>
<td>------</td>
<td>Recurrent glioblastoma</td>
<td>• PCV indicated to be useful in patients with recurrent glioblastoma with a 6-month PFS rate of 38.4%.</td>
</tr>
</tbody>
</table>

Adult intracranial and spinal Ependymoma (excluding subependymoma)

- **Regimen**
- **NCCN Category**
- **FDA Approved**
- **Trial Design**
- **Comparator**
- **Primary End-Point**
- **Line of Therapy**
- **Conclusion**
Bevacizumab

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab (alone or with cytotoxic chemotherapy)</td>
<td>2A</td>
<td>No</td>
<td>Retrospective analysis</td>
<td>N/A</td>
<td>————</td>
<td>Recurrent ependymoma</td>
<td>• Use of bevacizumab-containing regimens appears to delay tumor progression (TTP 6.4mon) and demonstrated a partial response rate of 75%</td>
</tr>
</tbody>
</table>

Meningioma – recurrent or progressive

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab ± chemotherapy</td>
<td>2A (as a single agent)</td>
<td>No</td>
<td>Retrospective review</td>
<td>N/A</td>
<td>———</td>
<td>Recurrent or progressive disease</td>
<td>• Bevacizumab appears to be associated with anti-tumor effect with a 6-month PFS rate of 86% when administered as a single agent or in combination with chemotherapy.</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>2A</td>
<td>No</td>
<td>Retrospective review</td>
<td>N/A</td>
<td>———</td>
<td>———</td>
<td>• Patients treated with bevacizumab demonstrated a 6-month PFS rate of 43.8% with the best response being stable disease</td>
</tr>
</tbody>
</table>

Radiation necrosis

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab</td>
<td>2A</td>
<td>No</td>
<td>Retrospective analysis</td>
<td>N/A</td>
<td>————</td>
<td>For acute neurologic deterioration in patients with GBM</td>
<td>• Single agent bevacizumab improved function and quality of life in patients with glioblastoma</td>
</tr>
</tbody>
</table>
Ovarian Cancer

Recurrent Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer – Single agent therapy

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab</td>
<td>2A preferred</td>
<td>No</td>
<td>Phase 2 (GOG 170-D)</td>
<td>N/A</td>
<td>PFS ORR</td>
<td>Second- or third-line</td>
<td>• Bevacizumab demonstrated to be clinically active (ORR 21%) in second- and third-line treatment of patients with epithelial ovarian cancer and primary peritoneal cancer.</td>
</tr>
<tr>
<td>Topotecan</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 3, randomized, multicenter</td>
<td>Liposomal doxorubicin</td>
<td>------</td>
<td>Second-line or later</td>
<td>• Liposomal doxorubicin prolonged survival compared with topotecan in patients with recurrent and refractory epithelial ovarian cancer by almost 7 weeks</td>
</tr>
<tr>
<td>Bevacizumab (Q 3 weeks for 4 doses)</td>
<td>2A</td>
<td>No</td>
<td>Phase 2, randomized, double-blind, placebo-controlled</td>
<td>Saline</td>
<td>Change in edema volume on MRI at 6 weeks</td>
<td>Radiation necrosis</td>
<td>• Bevacizumab demonstrated efficacy with a response in all 5 patients who received bevacizumab in the treatment of radiation necrosis</td>
</tr>
<tr>
<td>Bevacizumab (5mg/kg Q 2 weeks for 4 cycles)</td>
<td>2A</td>
<td>No</td>
<td>Phase 2, randomized, controlled, open-label, multi-center trial</td>
<td>Corticosteroid</td>
<td>2-month ORR</td>
<td>Radiation necrosis after nasopharyngeal cancer therapy</td>
<td>• Compared with corticosteroids, bevacizumab offers improved symptomatic relief and radiographic response.</td>
</tr>
<tr>
<td>Regimen</td>
<td>NCCN Category</td>
<td>FDA Approved</td>
<td>Trial Design</td>
<td>Comparator</td>
<td>Primary End-Point</td>
<td>Line of Therapy</td>
<td>Conclusion</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>--------------</td>
<td>--</td>
<td>---</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Carboplatin + gemcitabine + bevacizumab, followed by bevacizumab until progression | 2A preferred | Yes | Phase 3 (OCEANS), randomized, multicenter, blinded, placebo-controlled | Carboplatin + gemcitabine + placebo | PFS | Second-line; recurrence after at least 6 months of first-line platinum-based therapy | • Carboplatin, gemcitabine, plus bevacizumab followed by bevacizumab until progression resulted in a statistically significant improvement in PFS compared with carboplatin, gemcitabine, plus placebo
• The final survival analysis did not show an increase in OS with the chemotherapy plus bevacizumab arm when compared with chemotherapy alone. |
| Carboplatin + paclitaxel + bevacizumab, followed by bevacizumab until progression | 2A preferred | Yes | Phase 3 (GOG-0213), randomized, multicenter, open-label, randomized | Carboplatin + paclitaxel | OS | Second-line or later; relapsing after 6 months of being treatment-free | • The addition of bevacizumab to standard chemotherapy, followed by maintenance therapy until progression, improved the median OS in patients with platinum-sensitive recurrent ovarian cancer, although not statistically significant |
| Carboplatin + liposomal doxorubicin | 2A preferred | Yes | Phase 3 (CALYPSO), randomized, multicenter | Carboplatin + paclitaxel | PFS | Second- or third-line therapy with recurrence after more than 6 months since first- or second-line platinum-based therapy | • Carboplatin + liposomal doxorubicin demonstrated superiority in PFS compared to carboplatin + paclitaxel. |
| Carboplatin + liposomal doxorubicin + | 2A preferred | No | Phase 3 (AGO-OVAR 2.21), randomized | Carboplatin + gemcitabine + | PFS | Recurrent disease after at least 6 months after first-line platinum- | • CD-BEV provided a significant PFS improvement compared to CG-BEV in patients with recurrent ovarian cancer suitable for platinum-based retreatment. CD-BEV was also |

Recurrent Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer – Platinum Sensitive
<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + chemotherapy (paclitaxel, liposomal doxorubicin, or topotecan)</td>
<td>2A preferred</td>
<td>Yes</td>
<td>Phase 3 (AURELIA), randomized, multi-center, open-label</td>
<td>Chemotherapy alone (paclitaxel, liposomal doxorubicin, or topotecan)</td>
<td>PFS</td>
<td>Platinum-resistant, recurrent disease (no more than 2 prior chemo regimens) • Adding bevacizumab to chemotherapy statistically significantly improved PFS and ORR; the OS trend was not significant.</td>
<td></td>
</tr>
<tr>
<td>Bevacizumab + oral cyclophosphamide</td>
<td>2A preferred</td>
<td>No</td>
<td>Retrospective review</td>
<td>N/A</td>
<td>-----</td>
<td>Platinum-resistant disease</td>
<td>Bevacizumab and cyclophosphamide demonstrated to be effective in heavily pretreated patients with recurrent ovarian carcinoma</td>
</tr>
<tr>
<td>Bevacizumab + oral cyclophosphamide</td>
<td>2A preferred</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>6-mon PFS</td>
<td>Platinum-resistant, recurrent disease (no more than 2 prior chemo regimens) • The combination of bevacizumab and oral cyclophosphamide is active in recurrent ovarian cancer with a 6-month PFS rate or 56%.</td>
<td></td>
</tr>
<tr>
<td>Docetaxel</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>--------</td>
<td>Second-line</td>
<td>Docetaxel is active in paclitaxel-resistant ovarian and peritoneal cancer but, in view of significant hematologic toxicity</td>
</tr>
<tr>
<td>Etoposide (oral)</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>--------</td>
<td>Second-line therapy</td>
<td>Etoposide is active in platinum-sensitive ovarian cancer with an ORR of 26.8%</td>
</tr>
<tr>
<td>Regimen</td>
<td>NCCN Category</td>
<td>FDA Approved</td>
<td>Trial Design</td>
<td>Comparator</td>
<td>Primary End-Point</td>
<td>Line of Therapy</td>
<td>Conclusion</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Topotecan | 2A | Yes | Phase 3, randomized, multicenter | Liposomal doxorubicin | ------ | Second-line or later | • Liposomal doxorubicin prolonged survival compared with topotecan in patients with recurrent and refractory epithelial ovarian cancer by almost 7 weeks
• Survival benefit is pronounced in patients with platinum-sensitive disease |
| Topotecan weekly (Tw) | 2A | Yes | Phase 2 (TOWER), randomized | Topotecan conventional 5-day therapy (Tc) | ORR | Second-line and later | • Conventional dosing of topotecan was more effective than weekly dosing in terms of response. There was no difference in median PFS or median OS. |

Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer – Primary or Adjuvant Therapy

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
</table>
| Bevacizumab + paclitaxel + carboplatin (bevacizumab given upfront and as maintenance) | 2A | Yes | Phase 3 (GOG-0218), double-blind, placebo-controlled, randomized Subgroup analysis | Carboplatin + paclitaxel intravenous | PFS | Newly diagnosed stage III or IV epithelial ovarian cancer following initial surgical resection
• In the GOG-0218 study, median PFS with bevacizumab plus chemotherapy followed by single-agent bevacizumab was 14.1 months versus 10.3 months with chemotherapy alone.
• A subgroup analysis suggested that upfront therapy with bevacizumab, carboplatin, and paclitaxel may be beneficial in patients with ascites. |
| Bevacizumab + paclitaxel + carboplatin intravenous (bevacizumab given upfront and as maintenance) | 2A | Yes | Phase 3 (ICON7), randomized Overall survival results | Carboplatin + paclitaxel intravenous | PFS | After surgery; patients with high-risk early-stage disease (clear cell or grade 3 tumors) or advanced disease
• Bevacizumab improved progression-free survival in women with ovarian cancer however, did not increase overall survival in the study population as a whole. An overall survival benefit was recorded in poor-prognosis patients. |
Cisplatin + Paclitaxel (IV/IP)

- **Regimen**: Cisplatin + Paclitaxel (IV/IP)
- **NCCN Category**: 2A
- **FDA Approved**: No
- **Trial Design**: Phase 3 (GOG 172), randomized
- **Comparator**: Cisplatin + Paclitaxel (IV)
- **Primary End-Point**: PFS
- **Line of Therapy**: First-line, optimally resected (< 1 cm residual mass)
- **Conclusion**: As compared with intravenous paclitaxel plus cisplatin, intravenous paclitaxel plus intraperitoneal cisplatin and paclitaxel improves survival in patients with optimally debulked stage III ovarian cancer.

Paclitaxel + Carboplatin

- **Regimen**: Paclitaxel + Carboplatin
- **NCCN Category**: 2A
- **FDA Approved**: Yes
- **Trial Design**: Phase 3, randomized, non-inferiority trial
- **Comparator**: Paclitaxel + cisplatin
- **Primary End-Point**: PFS
- **Line of Therapy**: First-line optimally resected (< 1 cm residual mass)
- **Conclusion**: In patients with advanced ovarian cancer, a chemotherapy regimen consisting of carboplatin plus paclitaxel results in less toxicity, is easier to administer, and is not inferior, when compared with cisplatin plus paclitaxel.

Paclitaxel + Carboplatin

- **Regimen**: Paclitaxel + Carboplatin
- **NCCN Category**: 2A
- **FDA Approved**: Yes
- **Trial Design**: Phase 3 (MITO-2), randomized
- **Comparator**: Pegylated liposomal doxorubicin (PLD) + carboplatin
- **Primary End-Point**: PFS
- **Line of Therapy**: First-line
- **Conclusion**: Carboplatin/PLD was not superior to carboplatin/paclitaxel, which remains the standard first-line chemotherapy for advanced ovarian cancer.

Docetaxel + Carboplatin

- **Regimen**: Docetaxel + Carboplatin
- **NCCN Category**: 2A
- **FDA Approved**: Yes
- **Trial Design**: Phase 3, randomized
- **Comparator**: Paclitaxel + carboplatin
- **Primary End-Point**: PFS
- **Line of Therapy**: First-line
- **Conclusion**: Docetaxel-carboplatin appears to be similar to paclitaxel-carboplatin in terms of progression-free survival and response.

Pegylated Liposomal Doxorubicin (PLD) + Carboplatin

- **Regimen**: Pegylated liposomal doxorubicin (PLD) + carboplatin
- **NCCN Category**: 2A
- **FDA Approved**: Yes
- **Trial Design**: See paclitaxel + carboplatin above
- **Comparator**: Carboptatin + paclitaxel
- **Primary End-Point**: ORR
- **Line of Therapy**: Neoadjuvant
- **Conclusion**: Neoadjuvant therapy with bevacizumab improved surgical

Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer – Neoadjuvant therapy

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + carboplatin + paclitaxel</td>
<td>2A</td>
<td>No</td>
<td>Phase 2 (GEICO 1205/NOVA TRIAL)</td>
<td>Carboplatin + paclitaxel</td>
<td>ORR</td>
<td>Neoadjuvant</td>
<td>Neoadjuvant therapy with bevacizumab improved surgical</td>
</tr>
<tr>
<td>Regimen</td>
<td>NCCN Category</td>
<td>FDA Approved</td>
<td>Trial Design</td>
<td>Comparator</td>
<td>Primary End-Point</td>
<td>Line of Therapy</td>
<td>Conclusion</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>------------------</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Cisplatin or carboplatin</td>
<td>None</td>
<td>No</td>
<td>Phase 3 (EORTC-NCIC), randomized</td>
<td>Primary debulking surgery</td>
<td>OS</td>
<td>Neoadjuvant therapy of stage IIIIC or IV disease</td>
<td>• Neoadjuvant chemotherapy followed by interval debulking surgery was not inferior to primary debulking surgery followed by chemotherapy as a treatment option for patients with bulky stage IIIIC or IV ovarian carcinoma</td>
</tr>
<tr>
<td>Carboplatin + paclitaxel</td>
<td>2A</td>
<td>No</td>
<td>Phase 3 (JCOG0602), randomized</td>
<td>Primary debulking surgery</td>
<td>OS</td>
<td>Neoadjuvant therapy</td>
<td>• Superiority of neoadjuvant chemotherapy or primary debulking surgery could not be confirmed.</td>
</tr>
</tbody>
</table>

Relapsed sex cord-stromal tumors

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab</td>
<td>2A</td>
<td>No</td>
<td>Retrospective review</td>
<td>N/A</td>
<td>------</td>
<td>Recurrent disease after cytotoxic chemotherapy</td>
<td>• Bevacizumab demonstrated activity for the treatment of recurrent ovarian granulosa cell tumors with an ORR of 38%.</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>2A</td>
<td>No</td>
<td>Phase 2 (GOG 251)</td>
<td>N/A</td>
<td>ORR</td>
<td>Recurrent disease; No prior bevacizumab</td>
<td>• Bevacizumab has activity in the treatment of recurrent sex cord-stromal tumors of the ovary with an ORR of 16.7%.</td>
</tr>
<tr>
<td>Leuprolide acetate</td>
<td>2A (granulosa cell tumors only)</td>
<td>No</td>
<td>Small study</td>
<td>N/A</td>
<td>------</td>
<td>First- or second-line</td>
<td>• Leuprolide acetate appears to have activity in patients with refractory ovarian granulosa cell tumor with an ORR of 40%.</td>
</tr>
</tbody>
</table>

Soft Tissue Sarcoma

Angiosarcoma
<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab</td>
<td>2A</td>
<td>No</td>
<td>Phase 2, open-label, multi-center</td>
<td>N/A</td>
<td>PFS</td>
<td>First-through fourth-line therapy</td>
<td>• Bevacizumab is an effective and well-tolerated treatment for metastatic or locally advanced angiosarcoma and epithelioid hemangioendothelioma. 17% had a partial response and 50% showed stable disease.</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>2A</td>
<td>No</td>
<td>Phase 2 (ANGIOTAX)</td>
<td>N/A</td>
<td>PFS</td>
<td>All lines of therapy</td>
<td>• Paclitaxel demonstrated efficacy in patients with metastatic or unresectable angiosarcoma with a 2-month PFS rate of 74%.</td>
</tr>
<tr>
<td>Docetaxel</td>
<td>2A</td>
<td>No</td>
<td>Phase 2, multi-center</td>
<td>N/A</td>
<td>........</td>
<td>Second-line</td>
<td>• Docetaxel has activity in adult soft tissue sarcoma in second-line therapy with a 17% partial response rate.</td>
</tr>
<tr>
<td>Vinorelbine</td>
<td>2A (for palliative therapy only)</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorafenib</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>ORR</td>
<td>First-through fourth-line therapy</td>
<td>• As a single agent, sorafenib has activity against angiosarcoma and minimal activity against other sarcomas.</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>2A</td>
<td>No</td>
<td>Phase 2, open-label, multi-center</td>
<td>N/A</td>
<td>ORR</td>
<td>First-through third-line therapy</td>
<td>• Sunitinib demonstrated evidence of response in patients with non-GIST sarcoma. Specific results for patients with angiosarcoma however was not noted.</td>
</tr>
</tbody>
</table>

Solitary Fibrous Tumor/Hemangiopericytoma
<table>
<thead>
<tr>
<th>Bevacizumab + temozolomide</th>
<th>2A</th>
<th>No</th>
<th>Retrospective analysis</th>
<th>N/A</th>
<th>******</th>
<th>All lines of therapy</th>
<th>Combination therapy with temozolomide and bevacizumab is a clinically beneficial regimen with a 79% partial response rate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunitinib</td>
<td>2A</td>
<td>No</td>
<td>Retrospective analysis</td>
<td>N/A</td>
<td>******</td>
<td>All lines of therapy</td>
<td>Sunitinib demonstrated clinical activity in patients with solitary fibrous tumors with 3 patients achieving a partial response and 16 patients with stable disease.</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>2A</td>
<td>No</td>
<td>Subgroup analysis from a Phase 2</td>
<td>N/A</td>
<td>******</td>
<td>Second-line and later</td>
<td>Data suggested a potential efficacy of sorafenib with 2 out of 5 patients achieving 9 months of disease control.</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>2A</td>
<td>No</td>
<td>Retrospective analysis</td>
<td>N/A</td>
<td>******</td>
<td>First-line and second-line</td>
<td>Pazopanib is an effective treatment option for recurrent or metastatic solitary fibrous tumor in first-line and second-line settings with an ORR of 50%.</td>
</tr>
</tbody>
</table>

Endometrial Carcinoma

Recurrent, Metastatic, or High-Risk Disease

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + carboplatin + paclitaxel</td>
<td>2A (for advanced or recurrent disease only)</td>
<td>No</td>
<td>Phase 2 (MITO Group END-2 trial), randomized</td>
<td>Carboplatin + paclitaxel</td>
<td>******</td>
<td>First-line and second-line</td>
<td>The addition of bevacizumab to carboplatin plus paclitaxel significantly increased PFS in advanced or recurrent endometrial cancer.</td>
</tr>
<tr>
<td>Bevacizumab + carboplatin + paclitaxel</td>
<td>2A (for advanced or</td>
<td>No</td>
<td>Retrospective analysis</td>
<td>N/A</td>
<td>******</td>
<td>First-line and second-line</td>
<td>Combination therapy with bevacizumab, paclitaxel, and carboplatin demonstrated an ORR of</td>
</tr>
<tr>
<td>Treatment</td>
<td>Grade</td>
<td>Recommendation</td>
<td>Study Level</td>
<td>Comparator</td>
<td>Endpoints</td>
<td>Line of Therapy</td>
<td>Comments</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>----------------</td>
<td>-------------</td>
<td>--</td>
<td>------------------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Carboplatin + paclitaxel (TC)</td>
<td>2A</td>
<td>preferred</td>
<td>Phase 3</td>
<td>Cisplatin + doxorubicin + paclitaxel + filgrastim (TAP)</td>
<td>OS</td>
<td>First-line</td>
<td>TC is not inferior to TAP in terms of PFS and OS. Overall, the toxicity profile favors TC.</td>
</tr>
<tr>
<td>Cisplatin + doxorubicin + paclitaxel (TAP)</td>
<td>2A</td>
<td>No</td>
<td>Phase 3</td>
<td>Cisplatin + doxorubicin (AP)</td>
<td>OS</td>
<td>Chemo-therapy naive</td>
<td>TAP significantly improves ORR, PFS, and OS compared with AP</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>2A (after progression on prior cytotoxic chemo)</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>6-mon PFS 6-mon OS</td>
<td>Second- or third-line therapy</td>
<td>Bevacizumab is clinically active based on PFS at 6 months of 40.4% in recurrent or persistent endometrial carcinoma</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>2A</td>
<td>No</td>
<td>GOG study</td>
<td>N/A</td>
<td></td>
<td>Second-line</td>
<td>Paclitaxel is an active agent in the treatment of endometrial cancer in patients who have had prior chemotherapy with an ORR of 27.3%</td>
</tr>
<tr>
<td>Liposomal doxorubicin</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td></td>
<td>Second-line</td>
<td>Liposomal doxorubicin has only limited activity (ORR 9.5%) in pretreated advanced, recurrent endometrial cancer</td>
</tr>
<tr>
<td>Temsirolimus</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>ORR</td>
<td>All lines of therapy</td>
<td>Temsirolimus demonstrated clinical activity with ORR higher in chemo-naive patients than in chemo-treated patients</td>
</tr>
</tbody>
</table>

Malignant Pleural Mesothelioma
<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + cisplatin + pemetrexed, followed by maintenance bevacizumab</td>
<td>1 (for unresectable disease only)</td>
<td>No</td>
<td>Phase 3 (MAPS), multi-center, randomized, controlled, open-label</td>
<td>Cisplatin + pemetrexed</td>
<td>OS</td>
<td>Chemo-naïve</td>
<td>• Addition of bevacizumab to pemetrexed plus cisplatin significantly improved OS in malignant pleural mesothelioma at the cost of expected manageable toxic effects, therefore it should be considered as a suitable treatment for the disease.</td>
</tr>
<tr>
<td>Cisplatin + pemetrexed</td>
<td>1</td>
<td>Yes</td>
<td>Phase 3, randomized</td>
<td>Cisplatin</td>
<td>-------</td>
<td>Chemo-naïve</td>
<td>Treatment with pemetrexed plus cisplatin and vitamin supplementation resulted in superior survival time, time to progression, and response rates compared with treatment with cisplatin alone in patients with malignant pleural mesothelioma.</td>
</tr>
</tbody>
</table>
| Bevacizumab + carboplatin + pemetrexed | 2A | No | Phase 2 | N/A | PFS | First-line | • Bevacizumab, carboplatin, and pemetrexed achieved a 34.2% partial response and 57.9% stable disease.
• The primary end point of the trial was not reached |
| Carboplatin + pemetrexed | 2A | No | Phase 2 | N/A | ------- | First-line | • This combination of carboplatin and pemetrexed is moderately active with an ORR of 25% |
| Carboplatin + pemetrexed | 2A | No | Phase 2, multi-center | N/A | ORR | Chemo-naïve | • Disease control rate, time to disease progression, and overall survival were similar to the results achieved with the standard regimen of pemetrexed and |
cisplatin, suggesting that the carboplatin combination could be an alternative option for these patients.

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboplatin + pemetrexed</td>
<td>2A</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIDS-Related Kaposi Sarcoma

Relapsed/refractory advanced, cutaneous, oral, visceral, or nodal disease

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + antiretroviral therapy (ART)</td>
<td>2A (for disease that has progressed on or not responded to first-line systemic therapy, and progressed on alternate first-line systemic therapy)</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>ORR</td>
<td>Progression after anti-retroviral therapy</td>
<td>• Bevacizumab has clinical activity with an ORR of 31%</td>
</tr>
<tr>
<td>Nab-paclitaxel</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td></td>
<td></td>
<td>• Nab-paclitaxel demonstrated efficacy in all patients</td>
</tr>
<tr>
<td>Drug</td>
<td>Status</td>
<td>Prior Treatment</td>
<td>Phase</td>
<td>ORR</td>
<td>Therapy</td>
<td>Medical Necessity</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>-----------------</td>
<td>-------</td>
<td>-----</td>
<td>--------------------------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Pomalidomide</td>
<td>2A</td>
<td>No</td>
<td>Phase 1/2</td>
<td>N/A</td>
<td>ORR</td>
<td>All lines of therapy</td>
<td></td>
</tr>
<tr>
<td>Liposomal doxorubicin</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 2</td>
<td>N/A</td>
<td>ORR</td>
<td>After doxorubicin + bleomycin + vincristine (ABV) or bleomycin + vincristine (BV) chemotherapy</td>
<td></td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>2A</td>
<td>Yes</td>
<td>Phase 2</td>
<td>N/A</td>
<td>ORR</td>
<td>Second-line after anthracycline</td>
<td></td>
</tr>
<tr>
<td>Etoposide</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>ORR</td>
<td>Subsequent therapy after prior combination chemo or anthracycline therapy</td>
<td></td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>2A</td>
<td>No</td>
<td>Phase IIA, randomized</td>
<td>Bleomycin + vincristine (BV)</td>
<td>ORR</td>
<td>Subsequent therapy after anti-retroviral therapy</td>
<td></td>
</tr>
<tr>
<td>Imatinib</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>ORR</td>
<td>Subsequent therapy after chemo or anti-retroviral therapy</td>
<td></td>
</tr>
<tr>
<td>Interferon alpha-2b (1 million units per day) + zidovudine</td>
<td>2A</td>
<td>No</td>
<td>Prospective randomized trial</td>
<td>Interferon alpha-2b (8 million units per day) + zidovudine</td>
<td>ORR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Pomalidomide demonstrated an ORR of 73% and is active regardless of HIV status.
- Liposomal doxorubicin is effective in treating patients who have experienced failure of standard chemotherapy for AIDS-KS.
- Paclitaxel demonstrated an ORR of 71% with responses that correlate to a fall in plasma IL-6 levels.
- Etoposide has an ORR of 36.1%.
- Gemcitabine demonstrated clinical activity with a CR rate of 33.3% in chemotherapy-naïve patients.
- Imatinib has clinical activity in AIDS-KS with a PR of 33.3%.
- Zidovudine + interferon alpha demonstrated clinical activity with dose-related responses and toxicity.
<table>
<thead>
<tr>
<th>Moda Health Plan, Inc. Medical Necessity Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalidomide</td>
</tr>
<tr>
<td>Vinorelbine</td>
</tr>
</tbody>
</table>

Vulvar Cancer

Advanced, Recurrent/Metastatic Disease - Squamous cell carcinoma

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + cisplatin + paclitaxel</td>
<td>2A preferred</td>
<td>No</td>
<td>Phase 3 (GOG-0240), randomized, controlled, open-label</td>
<td>Cisplatin + paclitaxel vs. topotecan + cisplatin + paclitaxel vs. topotecan + paclitaxel</td>
<td>OS</td>
<td>Persistent, recurrent, or metastatic cervical cancer (74% had received prior chemoradiation)</td>
<td>• Bevacizumab improved survival in patients with advanced cervical cancer with by 3.5 months compared to chemotherapy alone.</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>2A preferred</td>
<td>No</td>
<td>No data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carboplatin</td>
<td>2A preferred</td>
<td>No</td>
<td>No data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisplatin + paclitaxel (TP)</td>
<td>2A preferred</td>
<td>No</td>
<td>Phase 3 (JCOG0505), randomized</td>
<td>Carboplatin + paclitaxel (TC)</td>
<td>OS</td>
<td>≤ 1 platinum-regimen and no prior taxane</td>
<td>TC was non-inferior to TP in patients with metastatic or recurrent cervical cancer</td>
</tr>
</tbody>
</table>
Small Bowel Adenocarcinoma (SBA)

Advanced or Metastatic Disease – Initial Therapy

<table>
<thead>
<tr>
<th>Regimen</th>
<th>NCCN Category</th>
<th>FDA Approved</th>
<th>Trial Design</th>
<th>Comparator</th>
<th>Primary End-Point</th>
<th>Line of Therapy</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + FOLFOX</td>
<td>2A (if appropriate for intensive therapy)</td>
<td>No</td>
<td>Retrospective study</td>
<td>N/A</td>
<td>-----</td>
<td>First- and second-line</td>
<td>• Bevacizumab plus chemotherapy demonstrated an OS of 21.9 months.</td>
</tr>
<tr>
<td>Bevacizumab + CapeOx</td>
<td>2A (if appropriate for intensive therapy)</td>
<td>No</td>
<td>Phase 2, single-center, open-label</td>
<td>N/A</td>
<td>6-mon PFS</td>
<td>Untreated disease</td>
<td>• The results of the current study indicate that CapeOX with bevacizumab is an active regimen (6-mon PFS rate 68%) for patients with SBA.</td>
</tr>
<tr>
<td>FOLFOX</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>-----</td>
<td>First-line</td>
<td>• The modified FOLFOX as first-line therapy demonstrated an ORR of 48.5% in patients with advanced SBA.</td>
</tr>
<tr>
<td>FOLFOX</td>
<td>2A</td>
<td>No</td>
<td>Phase 2, multi-center, single-arm, open-label</td>
<td>N/A</td>
<td>1-year PFS</td>
<td>First-line</td>
<td>• Although the primary endpoint was not met, mFOLFOX6 showed effective with an ORR of 45% and 1-year PFS rate of 23% as a first-line treatment for SBA.</td>
</tr>
<tr>
<td>CapeOX</td>
<td>2A</td>
<td>No</td>
<td>Phase 2</td>
<td>N/A</td>
<td>ORR</td>
<td>First-line</td>
<td>• CapeOX produced an ORR of 50%, with 10% achieving complete response.</td>
</tr>
</tbody>
</table>